Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3751, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704398

ABSTRACT

Association of circulating glycoprotein acetyls (GlycA), a systemic inflammation biomarker, with lung function and respiratory diseases remain to be investigated. We examined the genetic correlation, shared genetics, and potential causality of GlycA (N = 115,078) with lung function and respiratory diseases (N = 497,000). GlycA showed significant genetic correlation with FEV1 (rg = -0.14), FVC (rg = -0.18), asthma (rg = 0.21) and COPD (rg = 0.31). We consistently identified ten shared loci (including chr3p21.31 and chr8p23.1) at both SNP and gene level revealing potential shared biological mechanisms involving ubiquitination, immune response, Wnt/ß-catenin signaling, cell growth and differentiation in tissues or cells including blood, epithelium, fibroblast, fetal thymus, and fetal intestine. Genetically elevated GlycA was significantly correlated with lung function and asthma susceptibility (354.13 ml decrement of FEV1, 442.28 ml decrement of FVC, and 144% increased risk of asthma per SD increment of GlycA) from MR analyses. Our findings provide insights into biological mechanisms of GlycA in relating to lung function, asthma, and COPD.


Subject(s)
Asthma , Biomarkers , Lung , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Humans , Asthma/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Biomarkers/metabolism , Biomarkers/blood , Male , Female , Genetic Predisposition to Disease , Glycoproteins/genetics , Glycoproteins/metabolism , Middle Aged , Inflammation/genetics , Genome-Wide Association Study , Adult , Aged , Respiratory Function Tests , Forced Expiratory Volume
2.
Article in English | MEDLINE | ID: mdl-38522902

ABSTRACT

BACKGROUND: Non-optimum temperatures are associated with increased risk of respiratory diseases, but the effects of apparent temperature (AT) on respiratory diseases remain to be investigated. METHODS: Using daily data from 2016 to 2020 in Ganzhou, a large city in southern China, we analyzed the impact of AT on outpatient and inpatient visits for respiratory diseases. We considered total respiratory diseases and five subtypes (influenza and pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma and chronic obstructive pulmonary disease [COPD]). Our analysis employed a distributed lag nonlinear model (DLNM) combined with a generalized additive model (GAM). RESULTS: We recorded 94,952 outpatients and 72,410 inpatients for respiratory diseases. We found AT significantly non-linearly associated with daily outpatient and inpatient visits for total respiratory diseases, influenza and pneumonia, and URTI, primarily during comfortable AT levels, while it was exclusively related with daily inpatient visits for LRTI and COPD. Moderate heat (32.1 °C, the 75.0th centile) was observed with a significant effect on both daily outpatient and inpatient visits for total respiratory diseases at a relative risk of 1.561 (1.161, 2.098) and 1.276 (1.027, 1.585), respectively (both P < 0.05), while the results of inpatients became insignificant with the adjustment for CO and O3. The attributable fractions in outpatients and inpatients were as follows: total respiratory diseases (24.43% and 18.69%), influenza and pneumonia (31.54% and 17.33%), URTI (23.03% and 32.91%), LRTI (37.49% and 30.00%), asthma (9.83% and 3.39%), and COPD (30.67% and 10.65%). Stratified analyses showed that children ≤5 years old were more susceptible to moderate heat than older participants. CONCLUSIONS: In conclusion, our results indicated moderate heat increase the risk of daily outpatient and inpatient visits for respiratory diseases, especially among children under the age of 5.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Influenza, Human , Pneumonia , Pulmonary Disease, Chronic Obstructive , Respiration Disorders , Respiratory Tract Infections , Child , Humans , Child, Preschool , Outpatients , Temperature , Inpatients , Air Pollution/adverse effects , Influenza, Human/epidemiology , Time Factors , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Asthma/epidemiology , Asthma/etiology , Pneumonia/epidemiology , Pneumonia/etiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , China/epidemiology , Air Pollutants/analysis , Particulate Matter/analysis
3.
RSC Adv ; 12(35): 22881-22892, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36105980

ABSTRACT

Perovskites with flexible structures and excellent redox properties have attracted considerable attention in industry, and their denitration activities can be further improved with metal substitution. In order to investigate the effect of Ce and Cu substitution on the physicochemical properties of perovskite in NH3-SCR system, a series of La1-x Ce x Mn1-y Cu y O3 (x = 0, 0.1, y = 0, 0.05, 0.1, 0.2, 0.4) catalysts were prepared by citrate sol-gel method and employed for NO removal in the simulated flue gas, and the physical and chemical properties of the catalysts were studied using XRD, SEM, BET, XPS, DRIFT characterizations. The Ce substitution on A-site cation of LaMnO3 can improve the denitration activity of the perovskite catalyst, and La0.9Ce0.1MnO3 displays NO conversion of 86.7% at 350 °C. The characterization results indicate that the high denitration activity of La0.9Ce0.1MnO3 is mainly attributed to the larger surface area, which contributes to the adsorption of NH3 and NO. Besides, the appropriate Cu substitution on B-site cation of La0.9Ce0.1MnO3 can further improve the denitration activity of perovskite catalyst, and La0.9Ce0.1Mn0.8Cu0.2O3 displays the NO conversion of 91.8% at 350 °C. Although the specific surface area of La0.9Ce0.1Mn0.8Cu0.2O3 is lower than La0.9Ce0.1MnO3, the Cu active sites and the Ce3+ contents are more developed, making many reaction units formed on the catalyst surface and redox properties of catalyst improved. In addition, strong metal interaction (Ce4+ + Mn2+ + Cu2+ ↔ Ce3+ + Mn3+/Mn4+ + Cu+) and high concentrations of chemical adsorbed oxygen and lattice oxygen both strengthen the redox reaction on catalyst surface, thus contributing to the better denitration activity of La0.9Ce0.1Mn0.8Cu0.2O3. Therefore, appropriate cerium and copper substitution will markedly improve the denitration activity of La-Mn perovskite catalyst. We also reasonably conclude a multiple reaction mechanism during NH3-SCR denitration process basing on DRIFT results, which includes the Eley-Rideal mechanism and Langmuir-Hinshelwood mechanism.

4.
Ultrason Sonochem ; 72: 105466, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33476966

ABSTRACT

A series of CuCe-modified TiO2-ZrO2 catalysts synthesized by stepwise impregnation method and ultrasonic-assisted impregnation method were investigated to research the removal of NO in the simulated flue gas. Results showed that the CuCe/TiO2-ZrO2 catalyst prepared by ultrasonic-assisted impregnation method exhibited the superior NO conversion, in which higher than 85% NO was degraded at the temperature range of 250-400 °C and the highest NO conversion of 94% at 350 °C. It proves that ultrasonic treatment can markedly improve the performance of catalysts. The effect of ultrasonic enhancement on CuCe/TiO2-ZrO2 was comprehensively studied through being characterized by physicochemical characterization. Results reveal that the ultrasonic cavitation effect improves the distribution of active species and the synergistic interaction between Cu with Ce components (Cu+ + Ce4+ â†” Cu2+ + Ce3+) on the catalysts significantly, thus resulting in better dispersibility as well as a higher ratio of Cu2+ and Ce3+ of the catalysts. Moreover, it was found that the CuCe/TiO2-ZrO2 catalyst prepared by the ultrasonic-assisted impregnation method represented a higher degree of ultrafine metal particles and evenness. The above results were described with the generalized dimension and singularity spectra in multifractal analysis and validated by the comparative test. Therefore, it can be concluded that ultrasonic treatment facilitates the particle size and distribution of active sites on the catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...