Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 836
Filter
1.
World J Gastroenterol ; 30(27): 3304-3313, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39086752

ABSTRACT

BACKGROUND: The efficacy of Vonoprazan-amoxicillin dual therapy (VAT) in the treatment of Helicobacter pylori (H. pylori) is controversial. AIM: To evaluate the efficacy of VAT in the Chinese population. METHODS: This prospective, multicenter, randomized, open-label, and two-stage study was conducted at 23 centers in Fujian, China (May 2021-April 2022). H. pylori-infected patients were randomized to bismuth quadruple therapy (BQT), BQT-Vonoprazan (BQT-V), seven-day VAT (VAT-7), ten-day VAT (VAT-10), and fourteen-day VAT (VAT-14) groups. The primary endpoint was the H. pylori eradication rate. The secondary endpoint was the frequency of adverse events. This study was registered with the Chinese Clinical Trial Registry, ChiCTR2100045778. RESULTS: In the first stage, VAT-7 and BQT-V groups were selected for early termination because less than 23 among 28 cases were eradicated. In the second stage, the eradication rates for BQT, VAT-10, and VA-14 were 80.2% [95% confidence interval (95%CI): 71.4%-86.8%], 93.2% (86.6%-96.7%), 92.2% (85.3%-96.0%) in the intention-to-treat (ITT) analysis, and 80.9% (95%CI: 71.7%-87.5%), 94.0% (87.5%-97.2%), and 93.9% (87.4%-97.2%) in the per-protocol analysis. The ITT analysis showed a higher eradication rate in the VAT-10 and VAT-14 groups than in the BQT group (P = 0.022 and P = 0.046, respectively). The incidence of adverse events in the VAT-10 and VAT-14 groups was lower than in the BQT group (25.27% and 13.73% vs 37.62%, respectively; P < 0.001). CONCLUSION: VAT with a duration of 10 or 14 days achieves a higher eradication rate than the BQT, with a more tolerable safety profile in H. pylori-infected patients in Fujian.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Proton Pump Inhibitors , Pyrroles , Sulfonamides , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter Infections/diagnosis , Middle Aged , Male , Sulfonamides/adverse effects , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Helicobacter pylori/drug effects , Helicobacter pylori/isolation & purification , Female , Prospective Studies , Amoxicillin/administration & dosage , Amoxicillin/adverse effects , Amoxicillin/therapeutic use , China/epidemiology , Drug Therapy, Combination/methods , Pyrroles/therapeutic use , Pyrroles/adverse effects , Pyrroles/administration & dosage , Treatment Outcome , Adult , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Aged , East Asian People
2.
Theranostics ; 14(11): 4297-4317, 2024.
Article in English | MEDLINE | ID: mdl-39113798

ABSTRACT

Aim: Although lactate supplementation at the reperfusion stage of ischemic stroke has been shown to offer neuroprotection, whether the role of accumulated lactate at the ischemia phase is neuroprotection or not remains largely unknown. Thus, in this study, we aimed to investigate the roles and mechanisms of accumulated brain lactate at the ischemia stage in regulating brain injury of ischemic stroke. Methods and Results: Pharmacological inhibition of lactate production by either inhibiting LDHA or glycolysis markedly attenuated the mouse brain injury of ischemic stroke. In contrast, additional lactate supplement further aggravates brain injury, which may be closely related to the induction of neuronal death and A1 astrocytes. The contributing roles of increased lactate at the ischemic stage may be related to the promotive formation of protein lysine lactylation (Kla), while the post-treatment of lactate at the reperfusion stage did not influence the brain protein Kla levels with neuroprotection. Increased protein Kla levels were found mainly in neurons by the HPLC-MS/MS analysis and immunofluorescent staining. Then, pharmacological inhibition of lactate production or blocking the lactate shuttle to neurons showed markedly decreased protein Kla levels in the ischemic brains. Additionally, Ldha specific knockout in astrocytes (Aldh1l1 CreERT2; Ldha fl/fl mice, cKO) mice with MCAO were constructed and the results showed that the protein Kla level was decreased accompanied by a decrease in the volume of cerebral infarction in cKO mice compared to the control groups. Furthermore, blocking the protein Kla formation by inhibiting the writer p300 with its antagonist A-485 significantly alleviates neuronal death and glial activation of cerebral ischemia with a reduction in the protein Kla level, resulting in extending reperfusion window and improving functional recovery for ischemic stroke. Conclusion: Collectively, increased brain lactate derived from astrocytes aggravates ischemic brain injury by promoting the protein Kla formation, suggesting that inhibiting lactate production or the formation of protein Kla at the ischemia stage presents new therapeutic targets for the treatment of ischemic stroke.


Subject(s)
Astrocytes , Ischemic Stroke , Lactic Acid , Neurons , Animals , Astrocytes/metabolism , Mice , Lactic Acid/metabolism , Male , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Neurons/metabolism , Neurons/pathology , Disease Models, Animal , Mice, Knockout , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Injuries/metabolism , Lactate Dehydrogenase 5/metabolism , Neuroprotective Agents/pharmacology
3.
Neuron ; 112(13): 2177-2196.e6, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38653248

ABSTRACT

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.


Subject(s)
Myelin Sheath , Neovascularization, Physiologic , Pericytes , Animals , Pericytes/metabolism , Pericytes/drug effects , Mice , Myelin Sheath/metabolism , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Growth Hormone/metabolism , Growth Hormone/pharmacology , Animals, Newborn , Hypoxia/metabolism , Cell Differentiation/drug effects , Mice, Inbred C57BL , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/drug effects , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/genetics , Angiogenesis
5.
J Imaging Inform Med ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491235

ABSTRACT

Radiofrequency ablation (RFA) is the treatment of choice for atrial fibrillation (AF). Additionally, the utilization of 3D printing for cardiac models offers an in-depth insight into cardiac anatomy and cardiovascular diseases. The study aims to evaluate the clinical utility and outcomes of RFA following in vitro visualization of the left atrium (LA) and pulmonary vein (PV) structures via 3D printing (3DP). Between November 2017 and April 2021, patients who underwent RFA at the First Affiliated Hospital of Xinxiang Medical University were consecutively enrolled and randomly allocated into two groups: the 3DP group and the control group, in a 1:1 ratio. Computed tomography angiography (CTA) was employed to capture the morphology and diameter of the LA and PV, which facilitated the construction of a 3D entity model. Additionally, surgical procedures were simulated using the 3D model. Parameters such as the duration of the procedure, complications, and rates of RFA recurrence were meticulously documented. Statistical analysis was performed using the t-test or Mann-Whitney U test to evaluate the differences between the groups, with a P-value of less than 0.05 considered statistically significant. In this study, a total of 122 patients were included, with 53 allocated to the 3DP group and 69 to the control group. The analysis of the morphological measurements of the LA and PV taken from the workstation or direct entity measurement showed no significant difference between the two groups (P > 0.05). However, patients in the 3DP group experienced significantly shorter RFA times (97.03 ± 28.39 compared to 120.51 ± 44.76 min, t = 3.05, P = 0.003), reduced duration of radiation exposure (2.55 [interquartile range 2.01, 3.24] versus 3.20 [2.28, 3.91] min, Z = 3.23, P < 0.001), and shorter modeling times (7.68 ± 1.03 compared to 8.89 ± 1.45 min, t = 5.38, P < 0.001). 3DP technology has the potential to enhance standard RFA practices by reducing the time required for intraoperative interventions and exposure to radiation.

6.
BMC Med Imaging ; 24(1): 57, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443826

ABSTRACT

BACKGROUND: The morphological information of the pulmonary vein (PV) and left atrium (LA) is of immense clinical importance for effective atrial fibrillation ablation. The aim of this study is to examine the consistency in different LA diameter measurement techniques. METHODS: Retrospective imaging data from 87 patients diagnosed with PV computed tomography angiography were included. The patients consisted of 50 males and 37 females, with an average age of (60.74 ± 8.70) years. Two physicians independently measured the anteroposterior diameter, long diameter, and transverse diameter of the LA using six different methods. Additionally, we recorded the post-processing time of the images. Physician 1 conducted measurements twice with a one-month interval between the measurements to assess intra-rater reliability. Using the intraclass correlation coefficient (ICC), the consistency of each LA diameter measurement by the two physicians was evaluated. We compared the differences in the LA diameter and the time consumed for measurements using different methods. This was done by employing the rank sum test of a randomized block design (Friedman M test) and the q test for pairwise comparisons among multiple relevant samples. RESULTS: (1) The consistency of the measured LA diameter by the two physicians was strong or very strong. (2) There were statistical differences in the anteroposterior diameter, long diameter, and transverse diameter of LA assessed using different methods (χ2 = 222.28, 32.74, 293.83, P < 0.001). (3) Different methods for measuring the diameters of LA required different amounts of time (χ2 = 333.10, P < 0.001). CONCLUSION: The results of left atrium (LA) diameter measurements conducted by different physicians were found to be reliable. However, the LA diameters obtained through various techniques exhibited variations. It was observed that measuring LA long diameters using only the VR (volume rendering) picture was the most clinically applicable method.


Subject(s)
Atrial Fibrillation , Heart Atria , Female , Male , Humans , Middle Aged , Aged , Reproducibility of Results , Retrospective Studies , Heart Atria/diagnostic imaging , Atrial Fibrillation/diagnostic imaging , Angiography
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1031053

ABSTRACT

Background The burden of chronic kidney diseases (CKD) is continuously increasing in the globe. Environmental factors are one of the trigger factors for chronic kidney diseases of unknown etiology (CKDu). However, the current toxicological evidence on the renal effects induced by environmental high concentrations of multiple ions in drinking water and high temperature exposure is very limited. Objective To preliminary investigate the renal effects of exposure to drinking water with environmental high concentrations of fluoride, calcium, sodium, and bromide ions alone or in combination with high temperature in mice. Methods A mouse drinking water exposure model was established using ICR male mouse (8 weeks old) with exposure to 3 mg·L−1 fluoride ions, 250 mg·L−1 calcium ions, 400 mg·L−1 sodium ions, and 1 mg·L−1 bromide ions (to mimic the high concentration of ions in the groundwater in the areas with a high prevalence rate of CKDu in Sri Lanka) and high temperature of 32 ℃. ICR male mice were randomly divided into a mixed fluoride-calcium-sodium-bromide ion and high temperature exposure group, exposure groups of each ion and high temperature alone, a fluoride-calcium-sodium ion exposure group, and a fluoride-calcium-sodium-bromide ion exposure group. In the control group, the animals were given normal purified water at room temperature of (23±2) ℃. After 12 consecutive weeks of exposure, body weights and liver (kidney) organ coefficients were determined. Assessment of renal histopathologic damage was performed by hematoxylin-eosin staining and pathology scoring. At the end of the 12-week exposure period, 24 h urine samples were collected for the measurements of creatinine (UCr), albumin (ALB), neutrophil gelatinase-associated lipocalin (NGAL), and β2-microglobulin (β2-MG) levels. Cell apoptosis was assessed by TUNEL assay. Results The mice in the mixed exposure group showed a significant decrease in body weight and marked increases in the scores of renal histopathological injuries and the urinary levels of β2-MG compared to those of the control mice (P<0.05). Compared with the control group, the differences in body weight and urinary renal injury indexes of the mice in the fluoride-calcium-sodium and the fluoride-calcium-sodium-bromide ion groups (except for the decrease of the β2-MG levels in urinary in the latter group) were not statistically significant (P>0.05), but the renal histopathological injury scores were significantly increased (P<0.05). By contrast, body weights, liver (kidney) organ coefficient, and renal histopathological injury scores were comparable in the control mice and the mice fed with drinking water containing high levels of a single ion alone or housed at high temperature alone (P>0.05). Furthermore, the renal histopathological injury score showed no significant differences between the fluoride-calcium-sodium ion exposure group and the fluoride-calcium-sodium-bromide ion exposure group (P>0.05). The interaction between bromide ions and fluoride-calcium-sodium ions on renal tissue pathological damage was not statistically significant (P>0.05). Results from the TUNEL assay showed a significant increase in renal cell apoptosis in the fluoride-calcium-sodium ion exposure group (P<0.05). Conclusions Environmental high levels of mixed fluoride, calcium, and sodium ions in drinking water induce renal pathological damage in mice, which are exacerbated in combination with high temperature environment. High temperature exposure alone does not affect the pathological damage of renal tissue,

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013603

ABSTRACT

Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.

9.
Article in English | WPRIM (Western Pacific) | ID: wpr-1044521

ABSTRACT

The correlation between hearing loss (HL) and physical performance in patients receiving maintenance hemodialysis (MHD) remains poorly investigated. This study explored the association between HL and physical performance in patients on MHD. Methods: This multicenter cross-sectional study was conducted between July 2020 and April 2021 in seven hemodialysis centers in Shanghai and Suzhou, China. The hearing assessment was performed using pure-tone average (PTA). Physical performance was assessed using the Timed Up and Go Test (TUGT), handgrip strength, and gait speed. Results: Finally, 838 adult patients (male, 516 [61.6%]; 61.2 ± 2.6 years) were enrolled. Among them, 423 (50.5%) had mild to profound HL (male, 48.6% and female, 53.4%). Patients with HL had poorer physical performance than patients without HL (p < 0.001). TUGT was positively correlated with PTA (r = 0.265, p < 0.001), while handgrip strength and gait speed were negatively correlated with PTA (r = –0.356, p < 0.001 and r = –0.342, p < 0.001, respectively). Physical performance in patients aged <60 years showed significant dose-response relationships with HL. After adjusting for confounders, the odds ratios (95% confidence intervals) for HL across the TUGT quartiles (lowest to highest) were 1.00 (reference), 1.15 (0.73–1.81), 1.69 (1.07–2.70), and 2.87 (1.69–4.88) (p for trend = 0.005). Conclusion: Lower prevalence of HL was associated with a faster TUGT and a stronger handgrip strength in patients on MHD.

10.
ACS Chem Neurosci ; 15(2): 382-393, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38155530

ABSTRACT

Major facilitator superfamily domain-containing 2a (Mfsd2a) is a sodium-dependent lysophosphatidylcholine cotransporter that plays an important role in maintaining the integrity of the blood-brain barrier and neurological function. Abnormal degradation of Mfsd2a often leads to dysfunction of the blood-brain barrier, while upregulation of Mfsd2a can retrieve neurological damage. It has been reported that Mfsd2a can be specifically recognized and ubiquitinated by neural precursor cell-expressed developmentally downregulated gene 4 type 2 (NEDD4-2) ubiquitin ligase and finally degraded through the proteasome pathway. However, the structural basis for the specific binding of Mfsd2a to NEDD4-2 is unclear. In this work, we combined deep learning and molecular dynamics simulations to obtain a Mfsd2a structure with high quality and a stable Mfsd2a/NEDD4-2-WW3 interaction model. Moreover, molecular mechanics generalized Born surface area (MM-GBSA) methods coupled with per-residue energy decomposition studies were carried out to analyze the key residues that dominate the binding interaction. Based on these results, we designed three peptides containing the key residues by truncating the Mfsd2a sequences. One of them was found to significantly inhibit Mfsd2a ubiquitination, which was further validated in an oxygen-glucose deprivation (OGD) model in a human microvascular endothelial cell line. This work provides some new insights into the understanding of Mfsd2a and NEDD4-2 interaction and might promote further development of drugs targeting Mfsd2a ubiquitination.


Subject(s)
Blood-Brain Barrier , Molecular Dynamics Simulation , Humans , Biological Transport , Blood-Brain Barrier/metabolism , Cell Line , Ubiquitination
11.
Nutrients ; 15(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447266

ABSTRACT

Colorectal cancer (CRC) risk is influenced by dietary patterns and gut microbiota enterotypes. However, the interaction between these factors remains unclear. This study examines this relationship, hypothesizing that different diets may affect colorectal tumor risk in individuals with varied gut microbiota enterotypes. We conducted a case-control study involving 410 Han Chinese individuals, using exploratory structural equation modeling to identify two dietary patterns, and a Dirichlet multinomial mixture model to classify 250 colorectal neoplasm cases into three gut microbiota enterotypes. We assessed the association between dietary patterns and the risk of each tumor subtype using logistic regression analysis. We found that a healthy diet, rich in vegetables, fruits, milk, and yogurt, lowers CRC risk, particularly in individuals with type I (dominated by Bacteroides and Lachnoclostridium) and type II (dominated by Bacteroides and Faecalibacterium) gut microbiota enterotypes, with adjusted odds ratios (ORs) of 0.66 (95% confidence interval [CI] = 0.48-0.89) and 0.42 (95% CI = 0.29-0.62), respectively. Fruit consumption was the main contributor to this protective effect. No association was found between a healthy dietary pattern and colorectal adenoma risk or between a high-fat diet and colorectal neoplasm risk. Different CRC subtypes associated with gut microbiota enterotypes displayed unique microbial compositions and functions. Our study suggests that specific gut microbiota enterotypes can modulate the effects of diet on CRC risk, offering new perspectives on the relationship between diet, gut microbiota, and colorectal neoplasm risk.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Case-Control Studies , Colorectal Neoplasms/pathology , Diet, High-Fat , East Asian People , Diet, Healthy
12.
Sci Total Environ ; 894: 164948, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37336414

ABSTRACT

Brucellosis is a highly contagious zoonotic and systemic infectious disease caused by Brucella, which seriously affects public health and socioeconomic development worldwide. Particularly, in China accumulating eco-environmental changes and agricultural intensification have increased the expansion of human brucellosis (HB) infection. As a traditional animal husbandry area adjacent to Inner Mongolia, Datong City in northwestern China is characterized by a high HB incidence, demonstrating obvious variations in the risk pattern of HB infection in recent years. In this study, we built Bayesian spatiotemporal models to detect the transfer of high-risk clusters of HB occurrence in Datong from 2005 to 2020. Geographically and Temporally Weighted Regression and GeoDetector were employed to investigate the synergistic driving effects of multiple potential risk factors. Results confirmed an evident dynamic expansion of HB from the east to the west and south in Datong. The distribution of HB showed a negative correlation with urbanization level, economic development, population density, temperature, precipitation, and wind speed, while a positive correlation with the normalized difference vegetation index, and grassland/cropland cover areas. Especially, the local animal husbandry and related industries imposed a large influence on the spatiotemporal distribution of HB. This work strengthens the understanding of how HB spatial heterogeneity is driven by environmental factors, through which helpful insights can be provided for decision-makers to formulate and implement disease control strategies and policies for preventing the further spread of HB.


Subject(s)
Brucellosis , Humans , Animals , Bayes Theorem , Brucellosis/epidemiology , Brucellosis/veterinary , Risk Factors , China/epidemiology , Animal Husbandry
13.
Front Pharmacol ; 14: 1091616, 2023.
Article in English | MEDLINE | ID: mdl-36814490

ABSTRACT

Cerebral ischemia, resulting from compromised blood flow, is one of the leading causes of death worldwide with limited therapeutic options. Potential deleterious injuries resulting from reperfusion therapies remain a clinical challenge for physicians. This study aimed to explore the metabolomic alterations during ischemia-reperfusion injury by employing metabolomic analysis coupled with gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography quadrupole (UPLC/Q)-TOF-MS. Metabolomic data from mice subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion (MCAO/R) were compared to those of the sham and MCAO groups. A total of 82 simultaneously differentially expressed metabolites were identified among each group. The top three major classifications of these differentially expressed metabolites were organic acids, lipids, and organooxygen compounds. Metabolomics pathway analysis was conducted to identify the underlying pathways implicated in MCAO/R. Based on impactor scores, the most significant pathways involved in the response to the reperfusion after cerebral ischemia were glycerophospholipid metabolism, linoleic acid metabolism, pyrimidine metabolism, and galactose metabolism. 17 of those 82 metabolites were greatly elevated in the MCAO/Reperfusion group, when compared to those in the sham and MCAO groups. Among those metabolites, glucose-6-phosphate 1, fructose-6-phosphate, cellobiose 2, o-phosphonothreonine 1, and salicin were the top five elevated metabolites in MCAO/R group, compared with the MCAO group. Glycolysis, the pentose phosphate pathway, starch and sucrose metabolism, and fructose and mannose degradation were the top four ranked pathways according to metabolite set enrichment analysis (MSEA). The present study not only advances our understanding of metabolomic changes among animals in the sham and cerebral ischemia groups with or without reperfusion via metabolomic profiling, but also paves the way to explore potential molecular mechanisms underlying metabolic alteration induced by cerebral ischemia-reperfusion.

14.
Am J Trop Med Hyg ; 108(3): 599-608, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36689943

ABSTRACT

Malaria is a parasitic disease caused by Plasmodium, and Anopheles sinensis is a vector of malaria. Although malaria is no longer indigenous to China, a high risk remains for local transmission of imported malaria. This study aimed to identify the risk distribution of vector An. sinensis and malaria transmission. Using data collected from routine monitoring in Shanghai from 2010 to 2020, online databases for An. sinensis and malaria, and environmental variables including climate, geography, vegetation, and hosts, we constructed 10 algorithms and developed ensemble models. The ensemble models combining multiple algorithms (An. sinensis: area under the curve [AUC] = 0.981, kappa = 0.920; malaria: AUC = 0.959, kappa = 0.800), with the best out-of-sample performance, were used to identify important environmental predictors for the risk distributions of An. sinensis and malaria transmission. For An. sinensis, the most important predictor in the ensemble model was moisture index, which reflected degree of wetness; the risk of An. sinensis decreased with higher degrees of wetness. For malaria transmission, the most important predictor in the ensemble model was the normalized differential vegetation index, which reflected vegetation cover; the risk of malaria transmission decreased with more vegetation cover. Risk levels for An. sinensis and malaria transmission for each district of Shanghai were presented; however, there was a mismatch between the risk classification maps of An. sinensis and malaria transmission. Facing the challenge of malaria transmission in Shanghai, in addition to precise An. sinensis monitoring in risk areas of malaria transmission, malaria surveillance should occur even in low-risk areas for An. sinensis.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Humans , Anopheles/parasitology , Mosquito Vectors/parasitology , China/epidemiology , Malaria/epidemiology
15.
Ther Adv Chronic Dis ; 14: 20406223221142670, 2023.
Article in English | MEDLINE | ID: mdl-36699111

ABSTRACT

Background: Thrombosis and inflammation are crucial elements in the pathogenesis of cardiovascular disease. Hematological parameters elucidate information involving the inflammatory and blood coagulation processes. Objectives: The current study explored the association of hematological parameters with EOCAD to identify specific risk factors. Design: A single-center retrospective case-control study was conducted with 1693 coronary artery disease patients and 1693 controls. Methods: Hematological parameters were examined through an automated analyzer. Results: The basophil percentage was significantly reduced in EOCAD (0.43 ± 0.26, p < 0.001) and MI (0.33 ± 0.24, p < 0.001) groups compared with controls (0.54 ± 0.28). The eosinophil percentage was also significantly lower in EOCAD (2.21 ± 1.71, p < 0.001) and MI (1.71 ± 2.44, p < 0.001) groups compared with controls (2.41 ± 1.75). The lymphocyte percentage in patients of EOCAD and MI and controls was 31.65 ± 7.93, 25.48 ± 9.43, and 34.82 ± 7.28, respectively. A significant difference was observed among the groups (p < 0.001). Except for the mean corpuscular hemoglobin (MCH), other red blood cell (RBC) parameters significantly differed between EOCAD patients and controls. The red blood cell distribution width (RDW), hematocrit (HCT), RBC count, mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), and hemoglobin level were associated with EOCAD prevalence after adjusting for baseline differences. Platelet volume distribution width (PDW) also correlated with EOCAD prevalence (ORadjust = 1.087, 95% CI: 1.044-1.131). Conclusions: Hematological parameters are closely associated with EOCAD. Moreover, leukocyte parameters correlated with the presence and severity of the disease. In addition, erythrocyte parameters were associated with the disease presence but not with the disease severity. Among the platelet parameters, only PDW was related to the disease presence.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-977239

ABSTRACT

In the 18th century, the trade of medicinal materials in East Asia showed a trend of rapid development, and by the second half of the 18th century, it became the largest commodity category in East Asia's international trade. The growth of medicinal material trade during this period was not a simple trade issue, but was closely related to a series of changes in economic fields, such as the market network, trade balance and production. The changes in the international trade environment from the 17th to the 19th centuries greatly increased the demand for medicinal materials. It also affected the production of medicinal materials. The medicinal material industries in East Asian countries were characterised by specialisation and marketisation, and provided the market with abundant and high-quality medicinal materials. In turn, the development of the medicinal material industry promoted international trade, making medicinal materials the largest traded commodity in East Asia. In the 18th century, the development of medicinal material trade promoted the recalibration of international trade, and changed the commodity structure of East Asian trade. It is a result of the transformation of international trade and economic relations, and an important participant in the development of East Asian economy. Trade of medicinal materials in the 18th century expanded the market network and formed a positive interaction between trade and production, and reshaped the international trade structure of East Asia.

17.
Acta Pharmaceutica Sinica ; (12): 1732-1741, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978669

ABSTRACT

Depression is a common emotional disorder that seriously affects people's life and health all over the world. The pathogenesis of depression is complex, and traditional Chinese medicine (TCM) for antidepressants has a good therapeutic effect because of its multi-component, multi-pathway, and multi-target action mode. At present, the anti-depressive mechanism of TCM has not been fully clarified, but it is clear that depression is closely related to metabolic health. Therefore, in order to further explore the anti-depressive mechanism of TCM, this paper proposes research strategies on the anti-depressive mechanism of TCM based on functional metabolomics from the perspective of metabolism, the potential biomarkers of depression are analyzed with the help of multi-omics combined analysis technology, and the functional molecules of TCM for antidepressant are studied. Molecular biology techniques are used to accurately capture the molecular interactions between biomarkers of depression and functional compounds, which identify effective drug targets and further elucidate the biochemical functions and related mechanisms involved in depression metabolic disorders. This paper systematically reviews the research strategies and applications of functional metabolomics in the anti-depressive mechanisms of TCM, expounds on the core value of functional metabolomics, and summarizes the current research status and hot issues of TCM for antidepressants in recent years, providing new methods and new ideas for the study of mechanisms of TCM with the help of functional metabolomics.

18.
Acta Pharmaceutica Sinica ; (12): 856-866, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978755

ABSTRACT

Nanotechnology has shown obvious advantages in the field of medical treatment and diagnosis. Through the encapsulation of nano carriers, drugs not only enhance the therapeutic effect and reduce toxic and side effects, but also become intelligent responsive targeted drug systems through the modification on the surface of nano carriers. However, due to the obstacles in relevant basic research, production conditions, cost, clinical trials, and the lack of pharmacokinetic research on various drug loading systems, few nano systems have been used in therapy. In order to solve the above problems, this paper reviewed and analyzed the research progress of nano carriers in drug delivery, including their auxiliary role and characteristics, types and functions, pharmacokinetics, application prospects and challenges.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-980796

ABSTRACT

OBJECTIVE@#To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI.@*METHODS@#A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1β and IL-18 in the cerebral cortex of rats were determined by ELISA.@*RESULTS@#Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1β and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1β and IL-18 were higher (P<0.01).@*CONCLUSION@#Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , PPAR gamma/genetics , Pyroptosis , Interleukin-18 , Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Cerebral Cortex , Cerebral Infarction/therapy , Caspases , RNA, Messenger
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981383

ABSTRACT

This study aimed to explore the potentiating effect and mechanism of the extract of Jingfang Granules(JFG) on the activation of macrophages. The RAW264.7 cells were treated with JFG extract and then stimulated by multiple agents. Subsequently, mRNA was extracted, and reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the mRNA transcription of multiple cytokines in RAW264.7 cells. The levels of cytokines in the cell supernatant were detected by enzyme-linked immunosorbent assay(ELISA). In addition, the intracellular proteins were extracted and the activation of signaling pathways was determined by Western blot. The results showed that JFG extract alone could not promote or slightly promote the mRNA transcription of TNF-α, IL-6, IL-1β, MIP-1α, MCP-1, CCL5, IP-10, and IFN-β, and significantly enhance the mRNA transcription of these cytokines in RAW264.7 cells induced by R848 and CpG in a dose-dependent manner. Furthermore, JFG extract also potentiated the secretion of TNF-α, IL-6, MCP-1, and IFN-β by RAW264.7 cells stimulated with R848 and CpG. As revealed by mechanism analysis, JFG extract enhanced the phosphorylation of p38, ERK1/2, IRF3, STAT1, and STAT3 in RAW264.7 cells induced by CpG. The findings of this study indicate that JFG extract can selectively potentiate the activation of macrophages induced by R848 and CpG, which may be attributed to the promotion of the activation of MAPKs, IRF3, and STAT1/3 signaling pathways.


Subject(s)
Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Plant Extracts/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Cytokines/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL