Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 45(6): 4025-4042, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36633754

ABSTRACT

Groundwater is a finite resource in Davarzan region which is located between the ophiolite complex mountain in the north and salty playa at the south. The water samples were analyzed to assess the origin of groundwater pollution and explain links between the disturbed heavy metals composition of the earth's surface and the human health risks. The main heavy metal pollutants in the groundwater are Cr, Fe, As and Pb ions. In general, the groundwater salinity and some elements such as Cr and As are increased along with surface topography and groundwater flow directions from the northern ophiolite highlands recharge area to the adjacent desert discharging zone in the south. Despite the ophiolite complexes being the most enriched in Cr element, the lowest Cr concentration in the groundwater was measured near the ophiolite area, which is in the range of its discharged springs. Based on the groundwater conceptual pollution model, bedrock geochemistry controls the composition of soil and hence that of groundwater. The Cr samples show a direct relation with the EC value indicating that intrusion of salinity from the salt pan is probably another reason for the increased Cr concentration. The results of health risk assessment indicated that the groundwater suffered from significant contamination and if used for long-term without pre-treatment may pose serious health risks to human population via drinking water and irrigation of agricultural fields. This is the first attempt to apply hydrogeological setting along with the source of pollution and its health risk in a desert-ophiolitic area.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Groundwater/chemistry , Environmental Pollution , Soil , Metals, Heavy/analysis , Risk Assessment
2.
J Environ Health Sci Eng ; 17(2): 1029-1044, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32030172

ABSTRACT

In the present study chemical fingerprinting approach (isomeric ratios), a receptor-oriented model (principal component analysis with multiple linear regression, PCA/MLR) and a probabilistic health risk framework were employed to characterization, source appointment and carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in street dusts of Karaj urban area (northern Iran). Thirty street dusts samples were collected from the different functional areas in the city of Karaj and analyzed for PAHs by gas chromatography/mass spectrometry (GS/MS). The results obtained showed that ∑16PAHs concentrations varied widely from 16.2 to 1236.2 with a mean of 624 µg/kg and decreased in the following order of functional areas; traffic> residential > green/park areas. PAHs profile in the majority of dust samples were dominated by 5-6 rings PAHs, accounting for 25%-95% of the total PAHs. Qualitative source apportionment using the molecular isomeric ratios indicated mixed sources of PAHs in street dusts while PCA/MLR receptor model quantitatively identified three major sources with following relative contributions to the total dust PAH burden; 51% for pyrogenic-traffic sources, 32% for traffic-stationary sources and, 16% for petrogenic sources. The results of health risk assessment based on probabilistic model indicated that at the 95% percentiles, total cancer risks for children and adults are 8.43 × 10-4 and 3.34 × 10-5, respectively which both are higher than the acceptable baseline (10-6) indicating potential carcinogenic risk for local residents. It was also revealed that dust ingestion pathway is the most important contributor to the total carcinogenic risks of PAHs for both children and adults although the cancer risk level for adults through dermal and inhalation was 10 times greater than that for children. Based on the sensitivity analysis using the Monte Carlo simulation, benzo[a]pyrene equivalent concentration, exposure duration, dermal exposure area and ingestion rate were found to be the most sensitive exposure parameters which could introduce uncertainties into the cancer risk estimated.

3.
J Hazard Mater ; 172(1): 374-84, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19647938

ABSTRACT

The study presents the application of selected multivariate statistical methods (multivariate analysis of variance, discriminant analysis, principal component analysis) and geostatistical techniques to evaluate soil pollution status in arable lands of the Angouran region, NW Iran. Two representative landuse patterns, cropland and grassland, were selected for the purpose of this study. Seventy soil samples (35 topsoils and 35 subsoils) were collected from the two landuse types and 21 soil parameters including total element content and physicochemical properties were also determined. Results from application of the multivariate analysis of variance showed that the two landuse patterns were not statistically differentiated by subsoil variables, whereas significant differences existed between the two landuse patterns with respect to topsoil variables. Discriminant analysis rendered seven variables (Cu, As, Cd, OM, P, K and total N) as indicator parameters responsible for the discrimination between the two landuse types. Using the principal component analysis (PCA), two main components (PCs) explaining 71.71% of total variance were extracted. PC1, with a high contribution of Ni, Cr, Fe, Mn and clay content was hypothesized as lithogenic component and PC2, with high loadings for the seven discerning variables (Cu, As, Cd, OM, P, K and total N), was considered as an agrogenic component. Geostatistical analyses, including the calculation of semivariogram parameters and model fitting, further supported the PCA results. PC1 was generally characterized by moderate spatial dependence and long-range spatial variation (8000m) influenced by soil parent martial composition, while PC2 was modelled by pure nugget effect probably reflecting the influences of agrogenic activities. The findings of this study could not only expand our knowledge regarding the soil pollution status in the study area, but would also provide decision makers with the information to manage the agrochemical application in the arable lands to improve the sustainability and safety of intensive-farming activities in the study area.


Subject(s)
Metals/analysis , Soil Pollutants/analysis , Soil , Agriculture , Aluminum Silicates , Clay , Environmental Monitoring/methods , Environmental Pollution/analysis , Geography , Geology , Iran , Models, Statistical , Multivariate Analysis , Principal Component Analysis
4.
Environ Monit Assess ; 141(1-3): 257-73, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17891508

ABSTRACT

In this study an assessment is made of the negative impacts of wastewater irrigation on soils and crops sampled along the Khoshk River channel in suburban area of Shiraz City, SW Iran. For this purpose, samples of soil profiles (0-60 cm in depth) and crops were collected from two wastewater irrigated sites and a tube well-irrigated (control) site. Total concentrations of the five heavy metals (Ni, Pb, Cd, Zn and Cr) and their phytoavailable contents were determined. The Pollution Load Indexes (PLIs) and Contamination Factors (CFs) for soils and Hazard quotients (Sigma HQ) for some vegetables were also calculated. The results showed the use of untreated wastewater has caused the following changes as compared to control site: (1) a 20-30% increase in organic matter content of soil; (2) increase in pH by 2-3 units; (3) significant concentration increase in Ex-Ca especially in top layers of soil resulting in high CEC; (4) build up of heavy metals (notably Pb and Ni) in topsoil above Maximum Permissible Limits (MPLs) indicating a moderate contamination (PLI > 1, CF > 2.5); (5) contamination of some vegetables (spinach and lettuce) with Cd due to its high phytoavailability in topsoil causing a HQ > 1; (6) excessive accumulation of Ni and Pb in wheat due to continual addition of heavy metals through long-term wastewater application. The study concludes that strict protection measures, stringent guidelines and an integrated system for the treatment and recycling of wastewater are needed to minimize the negative impacts of wastewater irrigation in the study area.


Subject(s)
Crops, Agricultural , Industrial Waste , Soil , Water , Environmental Exposure , Iran , Metals, Heavy
SELECTION OF CITATIONS
SEARCH DETAIL
...