Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Appl ; 39(1): 48-57, 2024 07.
Article in English | MEDLINE | ID: mdl-38659361

ABSTRACT

Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.


Subject(s)
Cell Adhesion , Fibroblasts , Gelatin , Nanofibers , Polyesters , Tissue Scaffolds , Polyesters/chemistry , Gelatin/chemistry , Nanofibers/chemistry , Animals , Mice , Tissue Scaffolds/chemistry , Cell Line , Fibroblasts/cytology , Membranes, Artificial , Tissue Engineering , Biocompatible Materials/chemistry , Cell Survival/drug effects , Guided Tissue Regeneration, Periodontal/methods , Materials Testing , Regeneration
2.
Curr Opin Pulm Med ; 30(3): 303-312, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38426355

ABSTRACT

PURPOSE OF REVIEW: Severe asthma patients suffer from decreased quality of life, and increased asthma symptoms, exacerbations, hospitalizations, and risk of death. Biologics have revolutionized treatment for severe asthma. However, with multiple biologic agents now available, clinicians must consider initial selection the long-term effectiveness of biologics. Additionally, patients have overlapping eligibilities and clinicians may consider switching between biologics for improved response. Finally, careful assessment of biologics cessation is needed for severe asthma patients who depend on these add-on therapies for asthma control. RECENT FINDINGS: Evidence for long-term durability and safety varies by biologic agent. In general, initial benefits noted from these agents (ex. exacerbation reduction) is, at minimum, sustained with long term use. Rates of adverse events and serious adverse events, including those requiring cessation of a biologics are low with long term use. Further studies are needed to understand the development of antidrug antibodies but currently their prevalence rates are low. Adverse events and insufficient efficacy are common reasons for biologic cessation or switching. Discontinuation maybe associated with waning of benefits but can be considered in certain situations. Biologic switching can be associated with improved asthma control. SUMMARY: Biologics are safe and effective long-term therapies for the management of asthma. Discontinuation must be carefully considered and if possible avoided. Reasons for insufficient efficacy must be evaluated and if needed, biologic switching should be considered.


Subject(s)
Anti-Asthmatic Agents , Asthma , Biological Products , Humans , Anti-Asthmatic Agents/adverse effects , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Biological Products/adverse effects , Biological Products/therapeutic use , Drug Therapy, Combination , Quality of Life
3.
J Allergy Clin Immunol Pract ; 10(11): 2807-2819, 2022 11.
Article in English | MEDLINE | ID: mdl-36064186

ABSTRACT

Biomass fuel smoke, secondhand smoke, and oxides of nitrogen are common causes of household air pollution (HAP). Almost 2.4 billion people worldwide use solid fuels for cooking and heating, mostly in low- and middle-income countries. Wood combustion for household heating is also common in many areas of high-income countries, and minorities are particularly vulnerable. HAP in low- and middle-income countries is associated with asthma, acute respiratory tract infections in adults and children, chronic obstructive pulmonary disease, lung cancer, tuberculosis, and respiratory mortality. Although wood smoke exposure levels in high-income countries are typically lower than in lower-income countries, it is similarly associated with accelerated lung function decline, higher prevalence of airflow obstruction and chronic bronchitis, and higher all-cause and respiratory cause-specific mortality. Household air cleaners with high-efficiency particle filters have mixed effects on asthma and chronic obstructive pulmonary disease outcomes. Biomass fuel interventions in low-income countries include adding chimneys to cookstoves, improving biomass fuel combustion stoves, and switching fuel to liquid petroleum gas. Still, the impact on health outcomes is inconsistent. In high-income countries, strategies for reducing biomass fuel-related HAP are centered on community-level woodstove changeout programs, although the results are again inconsistent. In addition, initiatives to encourage home smoking bans have mixed success in households with children. Environmental solutions to reduce HAP have varying success in reducing pollutants and health problems. Improved understanding of indoor air quality factors and actions that prevent degradation or improve polluted indoor air may lead to enhanced environmental health policies, but health outcomes must be rigorously examined.


Subject(s)
Air Pollution, Indoor , Air Pollution , Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Child , Humans , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking/methods , Asthma/epidemiology , Lung
4.
Toxicol Rep ; 7: 200-208, 2020.
Article in English | MEDLINE | ID: mdl-32042598

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a well-known endocrine disruptor and it is ubiquitously distributed in the environment. However, very few studies have investigated the effects of short-term exposure to environmentally realistic concentrations of DEHP during early developmental stages and its chronic effects. This study monitored the long-term effects of transient exposure to DEHP in early life stages (F0 generation) and its subsequent fertilization success in F1 generation using Japanese medaka, Oryzias latipes, as model organism. Embryos (4 h post-fertilization, 4 hpf) of Japanese medaka were exposed to 0.001 ppb, 0.1 ppb, or 10 ppb DEHP for 21 days and returned to control water (without DEHP) for maturation (4 months old). At day 9 of the exposure study, mortality was significantly increased in medaka embryos (before hatching) treated with 0.001 ppb and 10 ppb DEHP. Continual exposure of young hatchlings for an additional 12 days (a total of 21 days of exposure) resulted in a significant increase in mortality in fish exposed to 0.001 ppb, 0.1 and 10 ppb DEHP. Significant reduction in egg production was observed in adult female medaka (4 months old) with prior exposure to 0.1 ppb and 10 ppb DEHP for 21 days during early development. Fertilization and hatching success were also significantly reduced in breeding pairs with prior exposure to 0.001 ppb, 0.1 ppb and 10 ppb DEHP during early life stage. Histological analysis of adult male gonads revealed a significant decline in mature sperm count accompanied by an increase in interstitial space in fish exposed to 0.1 ppb and 10 ppb DEHP during early development. Likewise, the amount of vitellogenic (mature) oocytes observed in the ovaries of adult female with transient exposure to 0.1 ppb and 10 ppb DEHP was significantly reduced when compared with the solvent control group. Our data suggest that transient exposure to ultra low concentrations of DEHP during sensitive time windows of development results in irreversible reproductive impairment which may impact fish populations negatively.

SELECTION OF CITATIONS
SEARCH DETAIL
...