Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 479
Filter
1.
Ultrason Sonochem ; 107: 106936, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38834000

ABSTRACT

This study focuses on developing a water-in-oil-in-water (W1/O/W2) double emulsion system using high-intensity ultrasound (HIU)-treated pea protein isolate (HIU-PPI) and pectin to encapsulate Lactobacillus plantarum (L. plantarum). The effects of ultrasound treatment on pea protein isolate (PPI) characteristics such as solubility, particle size, emulsification, surface hydrophobicity, and surface free sulfhydryl group were examined, determining optimal HIU processing conditions was 400 W for 10 min. The developed W1/O/W2 double emulsion system based on HIU-PPI demonstrated effective encapsulation and protection of L. plantarum, especially at the HIU-PPI concentration of 4 %, achieving an encapsulation efficiency of 52.65 %. Incorporating both HIU-PPI and pectin as emulsifiers increased the particle size and significantly enhanced the emulsion's viscosity. The highest bacterial encapsulation efficiency of the emulsion, 59.94 %, was attained at a HIU to pectin concentration ratio of 3:1. These emulsions effectively encapsulate and protect L. plantarum, with the concentration of HIU-PPI being a critical factor in enhancing probiotic survival under simulated gastrointestinal digestion. However, the concurrent utilization of pectin and HIU-PPI as emulsifiers did not provide a notable advantage compared to the exclusive use of HIU-PPI in enhancing probiotic viability during in vitro simulated digestion. This research offers valuable perspectives for the food industry on harnessing environmentally friendly, plant-based proteins as emulsifiers in probiotic delivery systems. It underscores the potential of HIU-modified pea protein and pectin in developing functional food products that promote the health benefits of probiotics.

2.
Heliyon ; 10(11): e31060, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832273

ABSTRACT

Resulted from the severe side effects, the development of inexpensive, simple and sensitive method for amethopterin (ATP, an antineoplastic drug) is very important but it still remains a challenge. In this work, low cost nanohybrid composed of carbon nanobowl (CNB) and ß-cyclodextrins (ß-CD) (CNB-CD) was prepared with a simple autopolymerization way and applied as electrode material to develop a novel electrochemical sensor of ATP. Scanning-/transmission-electron microscopy, Fourier transform infrared spectrum, photographic image and electrochemical technologies were utilized to characterize morphologies and structure of the as-prepared CNB and CNB-CD materials. On the basic of the coordination advantages from CNB (prominent electrical property and surface area) and ß-CD (superior molecule-recognition and solubility capabilities), the CNB-CD nanohybrid modified electrode exhibits superior sensing performances toward ATP, and a low detection limit of 0.002 µM coupled with larger linearity of 0.005-12.0 µM are obtained. In addition, the as-prepared sensor offers desirable repeatability, stability, selectivity and practical application property, confirming that this proposal may have important applications in the determination of ATP.

3.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849736

ABSTRACT

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Subject(s)
Biodiversity , Endophytes , Fungi , Plant Roots , Rhizosphere , Soil Microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Plant Roots/microbiology , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/growth & development , Ascomycota/isolation & purification , Phylogeny , Mycobiome
4.
Front Bioeng Biotechnol ; 12: 1395810, 2024.
Article in English | MEDLINE | ID: mdl-38863495

ABSTRACT

Previous laboratory-scale studies have consistently shown that carbon-based conductive materials can notably improve the anaerobic digestion of food waste, typically employing reactors with regular capacity of 1-20 L. Furthermore, incorporating riboflavin-loaded conductive materials can further address the imbalance between fermentation and methanogenesis in anaerobic systems. However, there have been few reports on pilot-scale investigation. In this study, a 10 m2 of riboflavin modified carbon cloth was incorporated into a pilot-scale (2 m3) food waste anaerobic reactor to improve its treatment efficiency. The study found that the addition of riboflavin-loaded carbon cloth can increase the maximum organic loading rate (OLR) by 40% of the pilot-scale reactor, compared to the system using carbon cloth without riboflavin loading, while ensuring efficient operation of the reaction system, effectively alleviating system acidification, sustaining methanogen activity, and increasing daily methane production by 25%. Analysis of the microbial community structure revealed that riboflavin-loaded carbon cloth enriched the methanogenic archaea in the genera of Methanothrix and Methanobacterium, which are capable of extracellular direct interspecies electron transfer (DIET). And metabolic pathway analysis identified the methane production pathway, highly enriched on the reduction of acetic acid and CO2 at riboflavin-loaded carbon cloth sample. The expression levels of genes related to methane production via DIET pathway were also significantly upregulated. These results can provide important guidance for the practical application of food waste anaerobic digestion engineering.

5.
J Robot Surg ; 18(1): 219, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771389

ABSTRACT

An experimental validation of a robotic system for radioactive iodine-125 seed implantation (RISI) in tumor treatment was conducted using customized phantom models and animal models simulating liver and lung lesions. The robotic system, consisting of planning, navigation, and implantation modules, was employed to implant dummy radioactive seeds into the models. Fiducial markers were used for target localization. In phantom experiments across 40 cases, the mean errors between planned and actual seed positions were 0.98 ± 1.05 mm, 1.14 ± 0.62 mm, and 0.90 ± 1.05 mm in the x, y, and z directions, respectively. The x, y, and z directions correspond to the left-right, anterior-posterior, and superior-inferior anatomical planes. Silicone phantoms exhibiting significantly smaller x-axis errors compared to liver and lung phantoms (p < 0.05). Template assistance significantly reduced errors in all axes (p < 0.05). No significant dosimetric deviations were observed in parameters such as D90, V100, and V150 between plans and post-implant doses (p > 0.05). In animal experiments across 23 liver and lung cases, the mean implantation errors were 1.28 ± 0.77 mm, 1.66 ± 0.69 mm, and 1.86 ± 0.93 mm in the x, y, and z directions, slightly higher than in phantoms (p < 0.05), with no significant differences between liver and lung models. The dosimetric results closely matched planned values, confirming the accuracy of the robotic system for RISI, offering new possibilities in clinical tumor treatment.


Subject(s)
Iodine Radioisotopes , Lung Neoplasms , Phantoms, Imaging , Robotic Surgical Procedures , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Iodine Radioisotopes/therapeutic use , Animals , Lung Neoplasms/radiotherapy , Brachytherapy/methods , Brachytherapy/instrumentation , Liver Neoplasms/radiotherapy , Humans , Fiducial Markers
6.
World J Oncol ; 15(3): 414-422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751702

ABSTRACT

Background: This study assessed clinical outcomes of three-dimensional-printed template (3DPT)-guided radioactive seed brachytherapy (RSBT) via a submental approach for recurrent base of tongue and floor of mouth cancer. Methods: Thirty-one patients with recurrent lingual and floor of mouth squamous cell carcinoma after surgery and radiotherapy were treated with 3DPT-guided RSBT from 2015 to 2022. Seeds were implanted through a submental approach guided by 3DPTs. Local control (LC), overall survival (OS), disease control (DC) and quality of life (QOL) were evaluated. Results: The median follow-up was 13.7 months. The 1-, 3- and 5-year LC rates were 66.1%, 66.1%, and 55.1% respectively. The 1-, 3- and 5-year OS rates were 63.4%, 33.4%, and 8.3%. The 1-, 3- and 5-year DC rates were 37.8%, 26.5%, and 21.2%. Univariate analysis showed tumor size significantly affected LC (P = 0.031). The presence of extraterritorial lesions affected DC and OS on multivariate analysis (P < 0.01). QOL improved significantly in domains of pain, swallowing, chewing, taste, and emotion after treatment compared to baseline. Four patients (13%) developed necrosis and osteoradionecrosis. Conclusions: 3DPT-guided submental RSBT provided favorable LC and QOL for recurrent tongue/floor of mouth cancer with minimal toxicity; moreover, severe toxicity should be noted.

7.
Sci Rep ; 14(1): 11217, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755208

ABSTRACT

Our preliminary investigation has identified the potential of serum fucosylated extracellular vesicles (EVs) miR-4732-5p in the early diagnosis of lung adenocarcinoma (LUAD) by a fucose-captured strategy utilizing lentil lectin (LCA)-magnetic beads and subsequent screening of high throughput sequencing and validation of real-time quantitative polymerase chain reaction (RT-qPCR). Considering the relatively complicated procedure, expensive equipment, and stringent laboratory condition, we have constructed an electrochemical biosensor assay for the detection of miR-4732-5p. miR-4732-5p is extremely low in serum, down to the fM level, so it needs to be detected by highly sensitive electrochemical methods based on the Mg2+-dependent DNAzyme splitting nucleic acid lock (NAL) cycle and hybridization chain reaction (HCR) signal amplification. In this study, signal amplification is achieved through the dual amplification reactions using NAL cycle in combination with HCR. In addition, hybridized DNA strands bind to a large number of methylene blue (MB) molecules to enhance signaling. Based on the above strategy, we further enhance our signal amplification strategies to improve detection sensitivity and accuracy. The implementation of this assay proceeded as follows: initially, miR-4732-5p was combined with NAL, and then Mg2+-dependent DNAzyme splitted NAL to release auxiliary DNA (S1) strands, which were subsequently captured by the immobilized capture probe DNA (C1) strands on the electrode surface. Following this, abundant quantities of DNA1 (H1) and DNA2 (H2) tandems were generated by HCR, and S1 strands then hybridized with the H1 and H2 tandems through base complementary pairing. Finally, MB was bonded to the H1 and H2 tandems through π-π stacking interaction, leading to the generation of a signal current upon the detection of a potential capable of inducing a redox change of MB by the electrode. Furthermore, we evaluated the performance of our developed electrochemical biosensor assay. The results demonstrated that our assay is a reliable approach, characterized by its high sensitivity (with a detection limit of 2.6 × 10-17 M), excellent specificity, good accuracy, reproducibility, and stability. Additionally, it is cost-effective, requires simple operation, and is portable, making it suitable for the detection of serum fucosylated extracellular vesicles miR-4732-5p. Ultimately, this development has the potential to enhance the diagnostic efficiency for patients with early-stage LUAD.


Subject(s)
Adenocarcinoma of Lung , Biosensing Techniques , Electrochemical Techniques , Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/blood , Biosensing Techniques/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Electrochemical Techniques/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Female , Male , Middle Aged
8.
Environ Res ; 252(Pt 2): 118829, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582424

ABSTRACT

Municipal wastewater treatment processes consume a significant amount of energy and generate substantial carbon emissions. However, organic matters existing in municipal wastewater hold the potential as a valuable carbon source. Activated sludge has the potential to capture and recover the organic matters, thereby enriching carbon sources and facilitating subsequent sludge anaerobic digestion as well as in line with the concept of sustainable development. Based on above, this study investigated the enrichment and recovery characteristics and mechanisms of activated sludge adsorption on carbon sources in municipal wastewater, while optimizing the recovery conditions. The results indicated that insoluble organic matters, as well as a fraction of dissolved organic matters, can be effective recovered within approximately 40 min. Specifically, 74.1% of insoluble organic matters and 25.8% of soluble organic matters were successfully captured by the activated sludge, resulting in a 5.0% increase in sludge organic matter content. Moreover, activated sludge demonstrated remarkable recovery of particulate organic matters across various particle sizes, particularly larger particles (>5 µm) with high protein content. Notably, the dissolved biodegradable organics such as tryptophan and tyrosine protein-like substances according to 3D-EEM and lipids, proteins/amino sugars, and carbohydrates according to FT-ICR MS can be effectively recovered. Finally, the study revealed that the recovery of organic matters from the wastewater by activated sludge followed the pseudo-second-order kinetics model, with surface binding, hydrogen bonding and interparticle diffusion in sludge flocs as the primary adsorption mechanisms. This approach had abroad application prospects for improving the profitability of wastewater treatment plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Wastewater , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Adsorption , Organic Chemicals/analysis
9.
Surg Endosc ; 38(5): 2788-2794, 2024 May.
Article in English | MEDLINE | ID: mdl-38587640

ABSTRACT

AIM: To analyze efficacy of endoscopic lithotripsy combined with drug lithotripsy as compared with drug lithotripsy for the treatment of phytobezoars. METHODS: We collected and evaluated case records of 165 patients with phytobezoars from 2014 to 2023. And we analyzed demographic and clinical characteristics, imaging features, endoscopic features, complications of phytobezoars, and compared efficacy between endoscopic lithotripsy combined with drug lithotripsy (Group A) and drug lithotripsy (sodium bicarbonate combined with proton pump inhibitor) (Group B). RESULTS: The median age of patients with phytobezoars was 67.84 ± 4.286 years old. Abdominal pain was the most common symptom and peptic ulcers (67.5%) were the most common complication. Bezoar-induced ulcers were more frequent in the gastric angle. The success rate of phytobezoars vanishing in Group A and Group B were similar (92.3% vs. 85.1% within 48 h, 98.7% vs. 97.7% within a week), while the average hospitalization period, average hospitalization cost, second endoscopy rate, and average endoscopic operation time were significantly lower in patients in Group B than in Group A. CONCLUSION: Drug lithotripsy is the preferred effective and safe treatment option for phytobezoars. We advise that an endoscopy should be completed after 48 h for drug lithotripsy.


Subject(s)
Bezoars , Lithotripsy , Humans , Bezoars/therapy , Male , Female , Lithotripsy/methods , Aged , Middle Aged , Retrospective Studies , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Treatment Outcome , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/therapeutic use , Combined Modality Therapy , Abdominal Pain/etiology , Abdominal Pain/therapy
10.
Anal Chem ; 96(13): 5251-5257, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38512289

ABSTRACT

The electrochemiluminescence (ECL) intensity can be regulated by ionic current passing through the microchannel, which broadened the regulation of the ECL sensors. But in the early reported sensors, the electrostatic repulsion and steric hindrance caused few targets to approach the interface of the microchannel driven by concentration difference, which reduced the detection efficiency and prolonged the detection period. In this study, different accumulation strategies, such as a positive electric field and different polarity electric fields, were designed to accumulate targets in the microchannel. The interaction of azide groups and hydrogen sulfide served as a research model. Hydrogen sulfide can react with the negatively charged azide groups in the microchannel surface to produce positively charged amino groups, decreasing the negative charge density of the microchannel and thus altering the ionic current and ECL intensity. The accumulation of hydrogen sulfide at the microchannel tip can increase the collision probability with azide groups to improve the detection efficiency, and the integration of accumulation and reaction can shorten the detection period to 28 min. The hydrogen sulfide concentration on the microchannel tip accumulated by applying different polarity electric fields was 22.3-fold higher than that accumulated by applying a positive electric field. The selected research model broadened the application range of a microchannel-based ECL sensor and confirmed the universality of the microchannel-based ECL sensor.

11.
Environ Sci Pollut Res Int ; 31(16): 23482-23504, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483721

ABSTRACT

The contribution of urban non-point source (NPS) pollution to surface water pollution has gradually increased, analyzing the sources of urban NPS pollution is of great significance for precisely controlling surface water pollution. A bibliometric analysis of relevant research literature from 2000 to 2021 reveals that the main methods used in the source analysis research of urban NPS pollution include the emission inventory approach, entry-exit mass balance approach, principal component analysis (PCA), positive matrix factorization (PMF) model, etc. These methods are primarily applied in three aspects: source analysis of rainfall-runoff pollution, source analysis of wet weather flow (WWF) pollution in combined sewers, and analysis of the contribution of urban NPS to the surface water pollution load. The application of source analysis methods in urban NPS pollution research has demonstrated an evolution from qualitative to quantitative, and further towards precise quantification. This progression has transitioned from predominantly relying on on-site monitoring to incorporating model simulations and employing mathematical statistical analyses for traceability. This paper reviews the principles, advantages, disadvantages, and the scope of application of these methods. It also aims to address existing problems and analyze potential future development directions, providing valuable references for subsequent related research.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Non-Point Source Pollution/analysis , Environmental Monitoring/methods , Water Pollution/analysis , Weather , China , Water Pollutants, Chemical/analysis
12.
Anal Chem ; 96(10): 4290-4298, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38427621

ABSTRACT

Halide perovskites have emerged as a highly promising class of photoelectric materials. However, the application of lead-based perovskites has been hindered by their toxicity and relatively weak stability. In this work, a composite material comprising a lead-free perovskite cesium copper iodide (CsCu2I3) nanocrystal and a metal-organic framework (MOF-801) has been synthesized through an in situ growth approach. The resulting composite material, denoted as CsCu2I3/MOF-801, demonstrates outstanding stability and exceptional optoelectronic characteristics. MOF-801 may serve a dual role by acting as a protective barrier between CsCu2I3 nanocrystals and the external environment, as well as promoting the efficient transfer of photogenerated charge carriers, thereby mitigating their recombination. Consequently, CsCu2I3/MOF-801 demonstrates its utility by providing both stability and a notably high initial photocurrent. Leveraging the inherent reactivity between H2S and the composite material, which results in the formation of Cu2S and structural alteration, an exceptionally sensitive photoelectrochemical sensor for H2S detection has been designed. This sensor exhibits a linear detection range spanning from 0.005 to 100 µM with a remarkable detection limit of 1.67 nM, rendering it highly suitable for precise quantification of H2S in rat brains. This eco-friendly sensor significantly broadens the application horizon of perovskite materials and lays a robust foundation for their future commercialization.

13.
Transl Lung Cancer Res ; 13(2): 256-268, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496684

ABSTRACT

Background: Non-predominant or even minimal micropapillary and/or solid (MP/S) subtypes have been reported to exert an unfavorable prognostic influence on surgically resected lung adenocarcinoma (ADC). Currently, there is a lack of evidence to demonstrate that high-grade pathological subtypes, including MP/S components, impact the prognosis of patients with surgically resected lung ADCs with ground-glass opacity (GGO). In this investigation, we explored the prognostic implications of minimal MP/S components in lung ADCs with GGO. Methods: A retrospective cohort study was conducted on 1,004 consecutive patients undergoing curative resection for pathologic stage (p-stage) I lung ADCs featuring GGO on computed tomography (CT) scans between January 2014 and December 2016. Tumors were categorized into MP/S positive (MP/S+) group and MP/S negative (MP/S-) group. MP/S+ tumors were defined when MP/S subtypes constituted ≥1% of the entire tumor. The prognostic impact of MP/S subtypes was evaluated using Kaplan-Meier analysis, Cox proportional hazard model and restricted cubic spine (RCS) model. Results: A total of 86 (8.6%) cases with MP/S+ tumors and 918 (91.4%) cases with MP/S- tumors were identified. The solid component tumor diameter and pathological invasive tumor size of MP/S+ tumors were both significantly larger than that of MP/S- tumors (13.0 vs. 4.0 mm, P<0.001, and 18.0 vs. 10.0 mm, P<0.001, respectively). After a median follow-up of 7.3 years, the presence of MP/S components was significantly associated with decreased RFS (5-year RFS, MP/S+ 88.3% vs. MP/S- 97.4%; P<0.001; HR =1.02). The presence of a histologic lepidic (Lep) component demonstrated a prognostic advantage in both MP/S- (5-year RFS, MP/S-Lep+ 98.0% vs. MP/S-Lep- 95.3%; P=0.01; HR =0.89) and MP/S+ subgroups (5-year RFS, MP/S+Lep+ 93.4% vs. MP/S+Lep- 83.2%; P=0.10; HR =0.84). MP/S+ components ≥5% were the only tumor-related factor that independently affected RFS [hazard ratio (HR) =1.77; 95% confidence interval (CI): 1.07-2.94] according to multivariate analysis. There was a progressively negative impact of the proportion of MP/S subtypes on RFS as illustrated by RCS model. Conclusions: The presence of MP/S patterns in stage I GGO-featured lung ADCs exhibit significant prognostic value and may have implications for tailored postoperative treatment and surveillance strategies, especially when the proportion exceeds 5% of the entire tumor.

14.
Mitochondrial DNA B Resour ; 9(3): 318-321, 2024.
Article in English | MEDLINE | ID: mdl-38476837

ABSTRACT

Cynanchum otophyllum Schneid is an important medicinal plant in China. In this paper, the chloroplast genome of C. otophyllum was sequenced based on high-throughput technology, and the chloroplast genome structure characteristics and phylogenetic relationship of C. otophyllum were analyzed. The results showed the complete plastome genome size of C. otophyllumis 160,874bp, including one small single copy (SSC, 19,851bp) and one large single copy (LSC, 92,009bp) regions isolated by a pair of inverted repeat regions (IRs, 24,507bp). The whole plastome genome including 84 protein encoding genes, 8 rRNA and 37 tRNA. Based on the phylogenetic topologies, C. otophyllum shows close association with additional Gomphocarpus and Asclepias genus. This study contributes to an enhanced understanding of the genetic information of C. otophyllum and provides a theoretical basis for the development of molecular markers and phylogeographic of the species, as well as for constructing the phylogenetic tree of Asclepiadaceae.

15.
Micromachines (Basel) ; 15(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542646

ABSTRACT

The power capacity of reflectarray antennas (RAs) is investigated through full-wave simulations and high-power microwave (HPM) experiments in this paper. In order to illustrate the results in detail, two RA elements are designed. The simulated power handling capacity of two RA elements are 7.17 MW/m2 and 2.3 GW/m2, respectively. To further study the HPM RA, two RA prototypes operating at 2.8 GHz are constructed with the aperture size of 1 m × 1 m. Simulations and experimental measurements are conducted for the two prototypes. The experimental results demonstrate that, even when subjected to 1 GW of power, the radiation beam of the RA with the second elements can still propagate in the intended direction. This research will establish a basis for advancing the practicality of RAs in HPM applications.

16.
17.
Langmuir ; 40(9): 4709-4718, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38388349

ABSTRACT

Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 µm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.


Subject(s)
Nanofibers , Tissue Engineering , Humans , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Myocytes, Cardiac
18.
Bioresour Technol ; 395: 130315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215887

ABSTRACT

The iron materials are commonly employed to enhance resource recovery from waste activated sludge through anaerobic digestion (AD). The influence of different iron sources, such as Fe2O3, Fe3O4, and FeCl3 on methane production and phosphorus transformation in AD systems with thermal hydrolyzed sludge as the substrate was assessed in this study. The results indicated that iron oxides effectively promote methane yield and methane production rate in AD systems, resulting in a maximum increase in methane production by 1.6 times. Soluble FeCl3 facilitated the removal of 92.3% of phosphorus from the supernatant through the formation of recoverable precipitates in the sludge. The introduction of iron led to an increase in the abundance of bacteria responsible for hydrolysis and hydrogenotrophic methanogenesis. However, the enrichment of microbial communities varied depending on the specific irons used. This study provides support for AD systems that recover phosphorus and produce methane efficiently from waste sludge.


Subject(s)
Chlorides , Ferric Compounds , Iron , Sewage , Sewage/microbiology , Anaerobiosis , Waste Disposal, Fluid/methods , Phosphorus , Methane , Bioreactors
19.
ACS Sens ; 9(1): 494-501, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38215311

ABSTRACT

Changes in the charge density on the inner surface of the microchannel can modulate the ion concentration at the tip, thus causing changes in the resistance of the system. In this study, this property is adopted to construct a portable sensor using a multimeter and aflatoxin B1 (AFB1) is used as the model target. Initially, the cDNA/aptamer complex is modified in the microchannel. The inner microchannel surface's charge density is then altered by the recognition of the target, leading to a change in the system's resistance, which can be conveniently monitored using a multimeter. Critical parameters influencing the performance of the system are optimized. Under optimum conditions, the resistance is linearly related to the logarithm of AFB1 concentration in the range of 100 fM-10 nM and the detection limit is 46 fM (S/N = 3). The resistive measurement is separated from the recognition reaction of the target, reducing the matrix interference during the detection process. This sensor boasts high sensitivity and specificity coupled with commendable reproducibility and stability. It is applied to assay the AFB1 content successfully in an actual sample of corn. Moreover, this approach is cost-effective, user-friendly, and highly accurate.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Aflatoxin B1/analysis , Reproducibility of Results , Limit of Detection , DNA, Complementary
20.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167156

ABSTRACT

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...