Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657444

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Lung , Membrane Proteins , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Lipopolysaccharides/toxicity , Mesenchymal Stem Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/deficiency , Lung/pathology , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Mice , Mice, Knockout , Apoptosis , Male
2.
J Adv Res ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070595

ABSTRACT

INTRODUCTION: Numerous studies demonstrated that NLRP3 has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) regulated the NLRP3 inflammasome, which has emerged as a novel therapeutic approach for treating IBD. OBJECTIVES: The exact role of NLRP3 in regulating MSCs' function is unclear. Our study aimed to explore how NLRP3 affects the therapeutic effects of MSCs in colitis. METHODS: We extracted MSCs from the bone marrow of C57BL/6 mice and Nlrp3 KO mice, and identified them using differentiation assays and flow cytometry. In vitro, Both WT MSCs and Nlrp3 KO MSCs were stimulated with inflammatory factor Lipopolysaccharide (LPS), and only WT MSCs were stimulated with varying concentrations of the NLRP3 inhibitor MCC950, then, quantified IL-10 levels in the supernatant. RNA-seq was performed to examine gene expression patterns and Seahorse was used to assess oxidative phosphorylation (OXPHOS) and glycolysis levels. Western blot was used to evaluate protein expression. In vivo, we treated DSS-induced colitis with either WT or Nlrp3 KO MSCs, monitoring weight, measuring colon length, and further evaluation. We also treated DSS-induced colitis with pretreated MSCs (BAY876, oe-Glut1, or oe-NLRP3), following the same experimental procedures as described above. RESULTS: Our results demonstrate that Nlrp3 deletion did not affect MSC phenotypes, but rather promoted osteogenic differentiation. However, the absence of Nlrp3 reduced IL-10 production in MSCs in the presence of LPS, leading to impaired protection on DSS-induced colitis. Conversely, overexpression of NLRP3 promotes the production of IL-10, enhancing therapeutic effects. Further investigation revealed that Nlrp3 deficiency downregulated Glut1 expression and glycolysis activation in MSCs, resulting in decreased IL-10 production. Notably, overexpressing Glut1 in Nlrp3 KO MSCs restored their therapeutic effect that was previously dampened due to Nlrp3 deletion. CONCLUSION: Our findings demonstrate that NLRP3 heightens the therapeutic effects of MSC treatment on DSS-induced colitis.

3.
Genes Dis ; 10(4): 1596-1612, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397525

ABSTRACT

Non-alcoholic steatohepatitis (NASH), a progressive form of non-alcoholic fatty liver disease (NAFLD), is characterised by chronic liver inflammation, which can further progress into complications such as liver cirrhosis and NASH-associated hepatocellular carcinoma (HCC) and therefore has become a growing health problem worldwide. The type I interferon (IFN) signaling pathway plays a pivotal role in chronic inflammation; however, the molecular mechanisms underlying NAFLD/NASH from the perspective of innate immune response has not yet been fully explored. In this study, we elucidated the mechanisms of how innate immune response modulates NAFLD/NASH pathogenesis, and demonstrated that hepatocyte nuclear factor-1alpha (HNF1A) was suppressed and the type I IFN production pathway was activated in liver tissues of patients with NAFLD/NASH. Further experiments suggested that HNF1A negatively regulates the TBK1-IRF3 signaling pathway by promoting autophagic degradation of phosphorylated-TBK1, which constrains IFN production, thereby inhibiting the activation of type I IFN signaling. Mechanistically, HNF1A interacts with the phagophore membrane protein LC3 through its LIR-docking sites, and mutations of LIRs (LIR2, LIR3, LIR4, and LIRs) block the HNF1A-LC3 interaction. In addition, HNF1A was identified not only as a novel autophagic cargo receptor but also to specifically induce K33-linked ubiquitin chains on TBK1 at Lys670, thereby resulting in autophagic degradation of TBK1. Collectively, our study illustrates the crucial function of the HNF1A-TBK1 signaling axis in NAFLD/NASH pathogenesis via cross-talk between autophagy and innate immunity.

4.
Autophagy ; 19(3): 1026-1027, 2023 03.
Article in English | MEDLINE | ID: mdl-35944095

ABSTRACT

The selective macroautophagy/autophagy pathway is an important pathway of protein degradation, regulating signal transduction pathways via selective degradation of certain signaling complexes. TBK1 functions as a key protein in innate immunity or metabolic-associated fatty liver disease (MAFLD); however, the degradation of TBK1 has not been fully investigated. Recently, we have found that HNF1A functions as a novel cargo receptor to bridge TBK1 and MAP1LC3/LC3, hence promoting the degradation of TBK1 and regulating antiviral innate immunity and MAFLD.


Subject(s)
Autophagy , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Immunity, Innate , Phosphorylation
5.
Biochem Biophys Res Commun ; 623: 181-188, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35921710

ABSTRACT

Type I interferon pathway is a crucial component of innate immune signaling upon pathogen infection or endogenous instability. An imbalance of type I interferon can lead to many diseases, such as autoimmune diseases and inflammatory diseases. Meanwhile, the side effects of clinical drugs on type I interferon signaling may result in impaired outcomes in clinical treatment, especially in cancer immunotherapy which is associated with type I interferon signaling. Here, we found that sorafenib, an FDA-approved drug for HCC chemotherapy, suppresses both DNA- and RNA-sensing mediated type I interferon pathway. Mechanistically, sorafenib treatment induces the autophagic degradation of MAVS, cGAS, TBK1, and IRF3, and attenuates the signaling transduction. In addition, sorafenib also inhibits the recruiting of STING or MAVS with TBK1 and IRF3. This work reveals the negative role of sorafenib in the regulation of type I interferon pathway. Sorafenib treatment is not only a potential drug for autoimmune disease and inflammation diseases, but also needs to be noticed in HCC chemotherapy.


Subject(s)
Carcinoma, Hepatocellular , Interferon Type I , Liver Neoplasms , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases , Sorafenib/pharmacology
6.
J Immunother Cancer ; 10(8)2022 08.
Article in English | MEDLINE | ID: mdl-36002188

ABSTRACT

BACKGROUND: Emerging evidence indicates that the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) axis plays a pivotal role in intrinsic antitumor immunity. Previous studies demonstrate that the conventional chemotherapy agent, teniposide, effectively promotes the therapeutic efficacy of programmed cell death protein-1 antibody (PD-1 Ab) through robust cGAS-STING activation. Unfortunately, the cGAS expression of tumor cells is reported to be severely suppressed by the hypoxic status in solid tumor. Clinically, enhancing chemotherapy-induced, DNA-activated tumor STING signaling by alleviating tumor hypoxia might be one possible direction for improving the currently poor response rates of patients with hepatocellular carcinoma (HCC) to PD-1 Ab. METHODS: Teniposide was first screened out from several chemotherapy drugs according to their potency in inducing cGAS-STING signaling in human HCC cells. Teniposide-treated HCC cells were then cultured under hypoxia, normoxia or reoxygenation condition to detect change in cGAS-STING signaling. Next, oxaliplatin/teniposide chemotherapy alone or combined with hyperbaric oxygen (HBO) therapy was administered on liver orthotopic mouse tumor models, after which the tumor microenvironment (TME) was surveyed. Lastly, teniposide alone or combined with HBO was performed on multiple mouse tumor models and the subsequent anti-PD-1 therapeutic responses were observed. RESULTS: Compared with the first-line oxaliplatin chemotherapy, teniposide chemotherapy induced stronger cGAS-STING signaling in human HCC cells. Teniposide-induced cGAS-STING activation was significantly inhibited by hypoxia inducible factor 1α in an oxygen-deficient environment in vitro and the inhibition was rapidly removed via effective reoxygenation. HBO remarkably enhanced the cGAS-STING-dependent tumor type Ⅰ interferon and nuclear factor kappa-B signaling induced by teniposide in vivo, both of which contributed to the activation of dendritic cells and subsequent cytotoxic T cells. Combined HBO with teniposide chemotherapy improved the therapeutic effect of PD-1 Ab in multiple tumor models. CONCLUSIONS: By combination of two therapies approved by the Food and Drug Administration, we safely stimulated an immunogenic, T cell-inflamed HCC TME, leading to further sensitization of tumors to anti-PD-1 immunotherapy. These findings might enrich therapeutic strategies for advanced HCC andwe can attempt to improve the response rates of patients with HCC to PD-1 Ab by enhancing DNA-activated STING signaling through effective tumor reoxygenation.


Subject(s)
Carcinoma, Hepatocellular , Hyperbaric Oxygenation , Liver Neoplasms , Animals , Antibodies , Carcinoma, Hepatocellular/drug therapy , Humans , Hypoxia , Liver Neoplasms/drug therapy , Membrane Proteins , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Oxaliplatin , Oxygen , Teniposide , Tumor Microenvironment , United States
7.
Front Bioeng Biotechnol ; 10: 819148, 2022.
Article in English | MEDLINE | ID: mdl-35360405

ABSTRACT

Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.

8.
Autophagy ; 18(4): 860-876, 2022 04.
Article in English | MEDLINE | ID: mdl-34382907

ABSTRACT

Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.


Subject(s)
Autophagy , Non-alcoholic Fatty Liver Disease , Animals , Autophagy/physiology , Fibroblasts/metabolism , Guanosine Triphosphate , Humans , Inflammation , Intracellular Signaling Peptides and Proteins/metabolism , Lipids , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Sequestosome-1 Protein/metabolism , Sirolimus
9.
Oxid Med Cell Longev ; 2021: 6617345, 2021.
Article in English | MEDLINE | ID: mdl-34239692

ABSTRACT

Hepatic ischemia-reperfusion injury (IRI) is the most common cause of liver damage leading to surgical failures in hepatectomy and liver transplantation. Extensive inflammatory reactions and oxidative responses are reported to be the major processes exacerbating IRI. The involvement of Yes-associated protein (YAP) in either process has been suggested, but the role and mechanism of YAP in IRI remain unclear. In this study, we constructed hepatocyte-specific YAP knockout (YAP-HKO) mice and induced a hepatic IRI model. Surprisingly, the amount of serum EVs decreased in YAP-HKO compared to WT mice during hepatic IRI. Then, we found that the activation of YAP increased EV secretion through F-actin by increasing membrane formation, while inhibiting the fusion of multivesicular body (MVB) and lysosomes in hepatocytes. Further, to explore the essential elements of YAP-induced EVs, we applied mass spectrometry and noticed CD47 was among the top targets highly expressed on hepatocyte-derived EVs. Thus, we enriched CD47+ EVs by microbeads and applied the isolated CD47+ EVs on IRI mice. We found ameliorated IRI symptoms after CD47+ EV treatment in these mice, and CD47+ EVs bound to CD172α on the surface of dendritic cells (DCs), which inhibited DC activation and the cascade of inflammatory responses. Our data showed that CD47-enriched EVs were released in a YAP-dependent manner by hepatocytes, which could inhibit DC activation and contribute to the amelioration of hepatic IRI. CD47+ EVs could be a potential strategy for treating hepatic IRI.


Subject(s)
CD47 Antigen/metabolism , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , Liver/blood supply , Reperfusion Injury/metabolism , YAP-Signaling Proteins/metabolism , Adult , Aged , Animals , Female , Humans , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , Middle Aged , Reperfusion Injury/genetics , Young Adult
10.
Cell Death Discov ; 7(1): 110, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001866

ABSTRACT

MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.

11.
Mol Immunol ; 129: 45-52, 2021 01.
Article in English | MEDLINE | ID: mdl-33278678

ABSTRACT

Type I interferons (IFNs) play a central role in host defense against viral infection. Multiple posttranslational modifications including ubiquitination and deubiquitination regulate the function of diverse molecules in type I IFN signaling. Many ubiquitin ligase enzymes, such as those of the TRAF and TRIM families, have been shown to participate in the production of type I IFNs and inflammatory cytokines. However, the function of deubiquitinating enzymes (DUBs), a protein family that counteracts the action of protein ubiquitination, on the regulation of antiviral immune responses is not well understood. In this study, we used the broad-spectrum DUB inhibitor G5 to reveal their function in antiviral signaling, and then systematically analyzed mRNA expression of the DUB genes upon poly (I:C) treatment in THP-1 cells. Based on this analysis, we cloned some DUB genes whose expression changed and determined their function in antiviral signaling. Taken together, we present a comprehensive DUB gene expression analysis in THP-1 cells, and suggest the involvement of this family of proteins in the regulation of host antiviral activities.


Subject(s)
Antiviral Agents/pharmacology , Deubiquitinating Enzymes/genetics , Gene Expression/drug effects , Gene Expression/genetics , Poly I-C/pharmacology , Signal Transduction/genetics , Cell Line , Cytokines/genetics , HEK293 Cells , Humans , Immunity/drug effects , Immunity/genetics , Interferon Type I/genetics , Pyrans/pharmacology , RNA, Messenger/genetics , Signal Transduction/drug effects , Sulfhydryl Compounds/pharmacology , THP-1 Cells , Ubiquitin/genetics , Ubiquitination/drug effects , Ubiquitination/genetics
12.
J Hepatol ; 74(5): 1176-1187, 2021 05.
Article in English | MEDLINE | ID: mdl-33217494

ABSTRACT

BACKGROUND & AIMS: Liver fibrosis is a wound healing response that arises from various aetiologies. The intermediate filament protein Nestin has been reported to participate in maintaining tissue homeostasis during wound healing responses. However, little is known about the role Nestin plays in liver fibrosis. This study investigated the function and precise regulatory network of Nestin during liver fibrosis. METHODS: Nestin expression was assessed via immunostaining and quantitative real-time PCR (qPCR) in fibrotic/cirrhotic samples. The induction of Nestin expression by transforming growth factor beta (TGFß)-Smad2/3 signalling was investigated through luciferase reporter assays. The functional role of Nestin in hepatic stellate cells (HSCs) was investigated by examining the pathway activity of profibrogenic TGFß-Smad2/3 signalling and degradation of TGFß receptor I (TßRI) after interfering with Nestin. The in vivo effects of knocking down Nestin were examined with an adeno-associated virus vector (serotype 6, AAV6) carrying short-hairpin RNA targeting Nestin in fibrotic mouse models. RESULTS: Nestin was mainly expressed in activated HSCs and increased with the progression of liver fibrosis. The profibrogenic pathway TGFß-Smad2/3 induced Nestin expression directly. Knocking down Nestin promoted caveolin 1-mediated TßRI degradation, resulting in TGFß-Smad2/3 pathway impairment and reduced fibrosis marker expression in HSCs. In AAV6-treated murine fibrotic models, knocking down Nestin resulted in decreased levels of inflammatory infiltration, hepatocellular damage, and a reduced degree of fibrosis. CONCLUSION: The expression of Nestin in HSCs was induced by TGFß and positively correlated with the degree of liver fibrosis. Knockdown of Nestin decreased activation of the TGFß pathway and alleviated liver fibrosis both in vitro and in vivo. Our data demonstrate a novel role of Nestin in controlling HSC activation in liver fibrosis. LAY SUMMARY: Liver fibrosis has various aetiologies but represents a common process in chronic liver diseases that is associated with high morbidity and mortality. Herein, we demonstrate that the intermediate filament protein Nestin plays an essential profibrogenic role in liver fibrosis by forming a positive feedback loop with the TGFß-Smad2/3 pathway, providing a potential therapeutic target for the treatment of liver fibrosis.


Subject(s)
Liver Cirrhosis , Nestin/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Caveolin 1/metabolism , Drug Discovery , Gene Expression Profiling/methods , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Proteolysis/drug effects , Signal Transduction/drug effects
13.
J Immunol Res ; 2020: 3032425, 2020.
Article in English | MEDLINE | ID: mdl-32566686

ABSTRACT

Wogonin (5,7-dihydroxy-8-methoxyflavone) is an ingredient of the extracts from Scutellaria baicalensis, which has documented a wide spectrum of anti-inflammatory and antitumor activities, including inhibiting regulatory T cells, regulating effector T cell functions, and mediating macrophage immunity. However, the potential effect of Wogonin on B cells has not been fully understood. Here, our results showed that Wogonin inhibited IL-10 secretion in B cells. When purified B cells were activated by lipopolysaccharide (LPS) in vitro, the amount of IL-10 production in supernatant was decreased by Wogonin significantly. The protective role of B cells on dextran sulfate sodium- (DSS-) induced colitis was alleviated after exposure to Wogonin. Furthermore, administration of Wogonin on LPS-treated B cells suppressed phosphorylation of STAT3 and ERK, but not AKT. Interestingly, among those IL-10 signaling-associated transcription factors, mRNA and protein levels of Hif-1α were specifically decreased by Wogonin. Overall, our study indicates that Wogonin suppresses potentially IL-10 production in B cells via inhibition of the STAT3 and ERK signaling pathway as well as inhibition of mRNA and protein levels of the transcription factor Hif-1α. These results provide novel and potential molecular targets of Wogonin in B cells and help us further understand its mechanism of action, which could potentially improve its clinical application in the future.


Subject(s)
B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Drugs, Chinese Herbal/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavanones/pharmacology , Interleukin-10/biosynthesis , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Cytokines/biosynthesis , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Immunophenotyping , Male , Mice , Transcription, Genetic
14.
Biochem Biophys Res Commun ; 527(3): 723-729, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32439161

ABSTRACT

Somatic cells can be directly reprogrammed into other cell lineages, which holds great promise for regenerative medicine. However, low efficiency and obscure mechanism hinder the application of direct reprogramming. Here, we show that overexpressing the hepatic-specific transcription factors (TFs) HNF1α, FOXA3, and GATA4 was sufficient to convert human urinary epithelial cells (hUCs) into induced hepatocyte-like cells (iHeps). The obtained iHeps were confirmed to express various hepatocyte-specific genes with multiple mature hepatocyte functions. Moreover, autophagy-related genes P62, ULK1, BECN1, VPS34, and LC3B were upregulated in the early stage of reprogramming and knockout of P62 and BECN1 in hUCs with CRISPR/Cas9 technology increased the efficiency of direct reprogramming. Collectively, we established a non-invasive approach to convert hUCs into iHeps and provided a glimpse into the role of autophagy in this process.


Subject(s)
Autophagy , Cellular Reprogramming Techniques , Epithelial Cells/cytology , Hepatocytes/cytology , Urine/cytology , Cell Line , Cells, Cultured , Cellular Reprogramming , Epithelial Cells/metabolism , Hepatocytes/metabolism , Humans
15.
Mol Cancer ; 19(1): 38, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32101138

ABSTRACT

Despite their small numbers, cancer stem cells play a central role in driving cancer cell growth, chemotherapeutic resistance, and distal metastasis. Previous studies mainly focused on how DNA or histone modification determines cell fate in cancer. However, it is still largely unknown how RNA modifications orchestrate cancer cell fate decisions. More than 170 distinct RNA modifications have been identified in the RNA world, while only a few RNA base modifications have been found in mRNA. Growing evidence indicates that three mRNA modifications, inosine, 5-methylcytosine, and N6-methyladenosine, are essential for the regulation of spatiotemporal gene expression during cancer stem cell fate transition. Furthermore, transcriptome-wide mapping has found that the aberrant deposition of mRNA modification, which can disrupt the gene regulatory network and lead to uncontrollable cancer cell growth, is widespread across different cancers. In this review, we try to summarize the recent advances of these three mRNA modifications in maintaining the stemness of cancer stem cells and discuss the underlying molecular mechanisms, which will shed light on the development of novel therapeutic approaches for eradicating cancer stem cells.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Neoplasms/pathology , Neoplastic Stem Cells/pathology , RNA, Messenger/chemistry , Animals , Cell Differentiation , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Am J Cancer Res ; 9(6): 1254-1265, 2019.
Article in English | MEDLINE | ID: mdl-31285957

ABSTRACT

In attempts to delay tumor progression after surgery or minimally invasive local treatments, multidisciplinary strategies have been broadly studied in patients with hepatocellular carcinoma (HCC). The objective of this present study was to evaluate the efficacy of autologous transplantations of cytokine-induced killer (CIK) cells as an adjuvant therapy for patients with HCC. A total of 264 patients with HCC were enrolled in this retrospective study. Of these patients, 165 received either CIK cell therapy alone or as adjuvant therapy to surgery, transcatheter arterial chemoembolization (TACE), or TACE-based comprehensive treatments (CT). The remaining 99 patients received only surgery or TACE. Kaplan-Meier analysis and the Chi-squared test were used to analyze the overall survival (OS), progression-free survival (PFS), and clinical characteristics of the patients in the different treatment subgroups. Kaplan-Meier analysis suggested that patients in the Surgery+CIK group had a significantly improved OS compared with those in the other three groups (P < 0.001). Furthermore, patients who developed a fever after the CIK cell treatments manifested a likely better OS (P = 0.028). Subgroup analysis indicated that patients in the Surgery+CIK group likely had an improved PFS but a similar OS compared with the patients in the Surgery-alone group (P = 0.055 for PFS, and P = 0.746 for OS). Further subgroup analysis showed that the OS in both the TACE+CIK and CT+CIK groups was prolonged significantly compared with that in the TACE-alone group (P = 0.015 and P = 0.018, respectively). However, similar OS was observed between the TACE+CIK and CT+CIK groups (P = 0.686). Autologous transplantation of CIK cells as an adjuvant therapy was associated with better survival for patients with HCC, especially for those who had also undergone TACE. A fever reaction might be a potential event for assessing the curative effect of the CIK treatment.

17.
Cell Death Dis ; 9(6): 691, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880866

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory bowel disease that is difficult to treat. However, previous preclinical and clinical studies have shown that mesenchymal stromal cells (MSCs) are a promising therapeutic approach, whereas the exact underlying molecular mechanisms of MSCs in treating CD remain unclear. Furthermore, the heterogeneity of MSCs, as well as the in vivo microenvironments may influence the therapeutic efficacy. In our previous study, we found that a subpopulation of mouse MSCs with a high expression of matrix Gla protein (MGP), one of the members of vitamin K-dependent protein family, possessed better immunoregulatory properties. Therefore, in this study we investigate whether the abundant MSCs-derived MGP participate in the therapeutic mechanisms for MSCs treating CD. Obvious suppression of cell proliferation and cytokine production in T cells were observed in vitro through MSCs-derived MGP. Moreover, MGP alleviated the clinical and histopathological severity of colonic inflammation in mouse experimental colitis models to a remarkable degree. Our results indicate that MGP might be a novel important mediator of MSCs-mediated immunomodulation in treating CD.


Subject(s)
Calcium-Binding Proteins/therapeutic use , Colitis/drug therapy , Extracellular Matrix Proteins/therapeutic use , Mesenchymal Stem Cells/metabolism , Animals , Apoptosis/drug effects , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Calcium-Binding Proteins/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colitis/chemically induced , Colitis/pathology , Cytokines/biosynthesis , Extracellular Matrix Proteins/pharmacology , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Peritoneal Lavage , Protein Processing, Post-Translational/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects , Trinitrobenzenesulfonic Acid , Vitamin K/pharmacology , Matrix Gla Protein
18.
Stem Cell Res Ther ; 9(1): 58, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523187

ABSTRACT

BACKGROUND: The advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes. Although previous efforts have succeeded in generating hepatocytes from human pluripotent stem cells in vitro by viral-based expression of transcription factors and/or addition of growth factors during the differentiation process, the safety issue of viral transduction and high cost of cytokines would hinder the downstream applications. Recently, the use of small molecules has emerged as a powerful tool to induce cell fate transition for their superior stability, safety, cell permeability, and cost-effectiveness. METHODS: In the present study, we established a novel efficient hepatocyte differentiation strategy of human pluripotent stem cells with pure small-molecule cocktails. This method induced hepatocyte differentiation in a stepwise manner, including definitive endoderm differentiation, hepatic specification, and hepatocyte maturation within only 13 days. RESULTS: The differentiated hepatic-like cells were morphologically similar to hepatocytes derived from growth factor-based methods and primary hepatocytes. These cells not only expressed specific hepatic markers at the transcriptional and protein levels, but also possessed main liver functions such as albumin production, glycogen storage, cytochrome P450 activity, and indocyanine green uptake and release. CONCLUSIONS: Highly efficient and expedited hepatic differentiation from human pluripotent stem cells could be achieved by our present novel, pure, small-molecule cocktails strategy, which provides a cost-effective platform for in vitro studies of the molecular mechanisms of human liver development and holds significant potential for future clinical applications.


Subject(s)
Cell Differentiation , Cellular Reprogramming Techniques/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Dexamethasone/pharmacology , Glycogen/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydrocortisone/pharmacology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Small Molecule Libraries/pharmacology
19.
Oncotarget ; 8(11): 17593-17609, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-26061710

ABSTRACT

Drug repurposing is currently an important approach for accelerating drug discovery and development for clinical use. Hepatocellular carcinoma (HCC) presents drug resistance to chemotherapy, and the prognosis is poor due to the existence of liver cancer stem-like cells. In this study, we investigated the effect of the neuroleptic agent pimozide to inhibit stem-like cell maintenance and tumorigenicity in HCC. Our results showed that pimozide functioned as an anti-cancer drug in HCC cells or stem-like cells. Pimozide inhibited cell proliferation and sphere formation capacities in HCC cells by inducing G0/G1 phase cell cycle arrest, as well as inhibited HCC cell migration. Surprisingly, pimozide inhibited the maintenance and tumorigenicity of HCC stem-like cells, particularly the side population (SP) or CD133-positive cells, as evaluated by colony formation, sphere formation and transwell migration assays. Furthermore, pimozide was found to suppress STAT3 activity in HCC cells by attenuating STAT3-dependent luciferase activity and down-regulating the transcription levels of downstream genes of STAT3 signaling. Moreover, pimozide reversed the stem-like cell tumorigenic phenotypes induced by IL-6 treatment in HCC cells. Further, the antitumor effect of pimozide was also proved in the nude mice HCC xenograft model. In short, the anti-psychotic agent pimozide may act as a novel potential anti-tumor agent in treating advanced HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Pimozide/pharmacology , Animals , Antipsychotic Agents/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Mice , Mice, Nude , Real-Time Polymerase Chain Reaction , STAT3 Transcription Factor/biosynthesis , STAT3 Transcription Factor/drug effects , Transcriptome/drug effects , Xenograft Model Antitumor Assays
20.
Stem Cell Reports ; 5(3): 314-22, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26321140

ABSTRACT

Activation of Wnt/ß-catenin signaling can induce both self-renewal and differentiation in naive pluripotent embryonic stem cells (ESCs). To gain insights into the mechanism by which Wnt/ß-catenin regulates ESC fate, we screened and characterized its downstream targets. Here, we show that the self-renewal-promoting effect of Wnt/ß-catenin signaling is mainly mediated by two of its downstream targets, Klf2 and Tfcp2l1. Forced expression of Klf2 and Tfcp2l1 can not only induce reprogramming of primed state pluripotency into naive state ESCs, but also is sufficient to maintain the naive pluripotent state of ESCs. Conversely, downregulation of Klf2 and Tfcp2l1 impairs ESC self-renewal mediated by Wnt/ß-catenin signaling. Our study therefore establishes the pivotal role of Klf2 and Tfcp2l1 in mediating ESC self-renewal promoted by Wnt/ß-catenin signaling.


Subject(s)
Down-Regulation , Kruppel-Like Transcription Factors/biosynthesis , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/biosynthesis , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Kruppel-Like Transcription Factors/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Repressor Proteins/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...