Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 356: 124344, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852660

ABSTRACT

The co-cultivation of fungi with microalgae facilitates microalgae harvesting and enhances heavy metal adsorption. However, the mechanisms of fungal tolerance to cadmium (Cd) have not yet been studied in detail. In this study, functional groups of fungi were analyzed under Cd stress using Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM) to explore their morphology. Confocal laser scanning microscope (CLSM) was used to characterize the changes in the content of extracellular polysaccharides and proteins, and a decrease in the ratio of glutathione (GSH) to oxidized glutathione (GSSG) was monitored. The GSH and GSSG contents in mycelium were 7.4 and 7.9 times higher than that in the control, respectively. After 72 h of Cd treatment, the fungal extracellular polysaccharide and extracellular protein contents increased by 16 and 11.4 mg/g, respectively, compared to the control. This provided several functional groups for the complexation of Cd ions to enhance fungal Cd tolerance. The metabolomic and transcriptomic results revealed a total of 358 differential metabolites after 20, 48, and 72 h in the positive and negative ion modes, and the number of differential metabolites specific to each group was 104, 14, and 89, respectively. There were 927, 1167, and 1287 up-regulated genes, and 1301, 1480, and 1683 down-regulated genes at 20, 48, and 72 h, respectively. Energy metabolism, amino acid metabolism, and the ABC transport system are the key metabolic pathways for tolerance enhancement and heavy metal detoxification in fungi. The expression of S-cysteinosuccinic acid was significantly up-regulated after Cd stress and associated with enhanced fungal tolerance and resistance to Cd.

2.
Environ Sci Pollut Res Int ; 31(27): 39439-39453, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819511

ABSTRACT

Red mud (RM) is a typical bulk solid waste with Fe/Al/Si/Ca-rich characteristics that has been used to prepare various heterogeneous catalysts such as iron-based catalysts and supported catalysts. Prussian blue analogues (PBA) is a low-cost, environmentally friendly, and active site rich iron-based metal organic framework, but its catalytic properties are adversely affected by their easy aggregation. In this study, nickel-doped RM-based PBA (RM-Ni PBA) was synthesized by acid dissolution-coprecipitation method for the degradation of ciprofloxacin (CIP). The characterization showed that RM-Ni PBA was a material with excellent dispersibility, large specific surface area, and abundant active sites. The degradation results showed that the removal efficiency of CIP in the RM-Ni PBA/H2O2 system was 16.63, 1.78, and 1.81 times that of RM, RM-PB, and Ni PBA, respectively. It was found that 1O2 was the main reactive oxygen species (ROS) dominated the degradation process, and its formation was accompanied by the mutual conversion of Ni(II)/Fe(II) and Ni(III)/Fe(III). Notably, the degradation process maintained a satisfactory efficiency over a wide pH range (3-9) and exhibited strong anti-interference ability against impurities such as Cl-, SO42-, and NO3-. The components and contents of RM-Ni PBA remained relatively stable during the degradation process. In addition, the degradation intermediates of CIP were identified, and possible degradation pathways were proposed. This study is expected to provide theoretical basis and technical guidance for the application of RM-based heterogeneous catalyst in the treatment of antibiotic wastewater.


Subject(s)
Ciprofloxacin , Ferrocyanides , Hydrogen Peroxide , Nickel , Ciprofloxacin/chemistry , Nickel/chemistry , Hydrogen Peroxide/chemistry , Ferrocyanides/chemistry , Catalysis , Solid Waste
3.
Water Res ; 252: 121221, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38324985

ABSTRACT

This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 µm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.


Subject(s)
Acidithiobacillus , Iron , Sulfates , Ferric Compounds , Sulfides , Oxidation-Reduction
4.
Sci Total Environ ; 916: 170278, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262539

ABSTRACT

The investigation of heavy metal wastewater treatment utilizing microalgae adsorption has been extensively demonstrated. However, the response mechanism based on metabolomics to analyze the time-series changes of microalgae under Cd stress has not been described in detail. In this study, SEM/TEM demonstrated that Cd accumulated on the cell surface of microalgae and was bioconcentrated in the cytoplasm, vesicles, and chloroplasts. Carbonyl/quinone/ketone/carboxyl groups (OCO), membrane polysaccharides (OH), and phospholipids (PO) were involved in the interaction of Cd ions, and the chlorophyll content underwent a process of decreasing in the early stage (1.62 mg/g at 48 h) and recovering to the normal level in the late stage, and the contents of MDA, GSH, and SOD were all increased (29.7 nmol/g, 0.23 mg/g, and 30.01 u/106 cells) and then gradually returned to the steady state. The results of EPS content and fluorescent labeling showed that Cd induced the overexpression and synthesis of extracellular polysaccharides and proteins, which is one of the defense mechanisms participating in the reduction of cellular damage by complexed Cd. Metabolomics results indicated that the malate synthesis pathway was activated after Cd-20 h, and the microalgal cells began to shift the metabolic pathway to storage lipid or polysaccharide biosynthesis. In the Calvin cycle, the expression of D-Sedoheptulose 7-phosphate in Cd-20 h_vs_ck and Cd-72 h_vs_Cd-20 h firstly declined and then increased, and the photosynthesis system was suppressed at the beginning, and then gradually returned to normal to maintain the successful development of the dark reaction. The results of time series analysis revealed that the response of microalgae to Cd was categorized into fast response and slow response to regulate cell adsorption and growth metabolism.


Subject(s)
Metals, Heavy , Microalgae , Cadmium/toxicity , Microalgae/physiology , Metabolomics , Polysaccharides
5.
Ecotoxicol Environ Saf ; 269: 115794, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38061084

ABSTRACT

The massive accumulation of red mud (RM) and the abuse of antibiotics pose a threat to environment safety and human health. In this study, we synthesized RM-based Prussian blue (RM-PB) by acid solution-coprecipitation method to activate H2O2 to degrade norfloxacin, which reached about 90% degradation efficiency at pH 5 within 60 min and maintained excellent catalytic performance over a wide pH range (3-11). Due to better dispersion and unique pore properties, RM-PB exposed more active sites, thus the RM-PB/H2O2 system produced more reactive oxygen species. As a result, the removal rate of norfloxacin by RM-PB/H2O2 system was 8.58 times and 2.62 times of that by RM/H2O2 system and PB/H2O2 system, respectively. The reactive oxygen species (ROS) produced in the degradation process included ·OH, ·O2- and 1O2, with 1O2 playing a dominant role. The formation and transformation of these ROS was accompanied by the Fe(III)/Fe(II) cycle, which was conducive for the sustained production of ROS. The RM-PB/H2O2 system maintained a higher degradation efficiency after five cycles, and the material exhibited strong stability, with a low iron leaching concentration. Further research showed the degradation process was less affected by Cl-, SO42-, NO3-, and humic acids, but was inhibited by HCO3- and HPO42-. In addition, we also proposed the possible degradation pathway of norfloxacin. This work is expected to improve the resource utilization rate of RM and achieve treating waste with waste.


Subject(s)
Ferrocyanides , Hydrogen Peroxide , Norfloxacin , Humans , Hydrogen Peroxide/chemistry , Reactive Oxygen Species , Ferric Compounds , Oxidation-Reduction
6.
J Funct Biomater ; 14(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998121

ABSTRACT

Silicon nitride is a bioceramic with great potential, and multiple studies have demonstrated its biocompatibility and antibacterial properties. In this study, silicon nitride was prepared by a microwave sintering technique that was different from common production methods. SEM and pore distribution analysis revealed the microstructure of microwave-sintered silicon nitride with obvious pores. Mechanical performance analysis shows that microwave sintering can improve the mechanical properties of silicon nitride. The CCK-8 method was used to demonstrate that microwave-sintered silicon nitride has no cytotoxicity and good cytocompatibility. From SEM and CLSM observations, it was observed that there was good adhesion and cross-linking of cells during microwave-sintered silicon nitride, and the morphology of the cytoskeleton was good. Microwave-sintered silicon nitride has been proven to be non-cytotoxic. In addition, the antibacterial ability of microwave-sintered silicon nitride against Staphylococcus aureus and Escherichia coli was tested, proving that it has a good antibacterial ability similar to the silicon nitride prepared by commonly used processes. Compared with silicon nitride prepared by gas pressure sintering technology, microwave-sintered silicon nitride has excellent performance in mechanical properties, cell compatibility, and antibacterial properties. This indicates its enormous potential as a substitute material for manufacturing bone implants.

7.
Sci Total Environ ; 898: 165417, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37429479

ABSTRACT

In this work, semi-industrial scale heap leaching of 200 t ion adsorption rare earth ores (IRE-ore) and rare earth elements (REEs) recovery from lixivium was first conducted. Biosynthetic citrate/(Na)3Cit, a typical microbial metabolite, was chosen as the lixiviant to conduct heap leaching. Subsequently, an organic precipitation method was proposed, which used oxalic acid to effectively recover REEs and reduce the production cost by lixiviant regeneration. The results showed that the heap leaching efficiency of REEs reached 98 % with a lixiviant concentration of 50 mmol/L and a solid-liquid ratio of 1:2. The lixiviant can be regenerated during the precipitation process, with REE yields and impurity aluminum yields of 94.5 % and 7.4 %, respectively. The residual solution can then be cyclically used as a new lixiviant after simple adjustment. High-quality rare earth concentrates with a rare earth oxide (REO) content of 96 % can be finally obtained after roasting. This work provides an eco-friendly alternative for IRE-ore extraction to solve the environmental issues caused by traditional technology. The results proved feasibility and provided a foundation for in situ (bio)leaching processes in further industrial tests and production.

8.
Bioorg Chem ; 136: 106533, 2023 07.
Article in English | MEDLINE | ID: mdl-37084587

ABSTRACT

Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of ß-lactam antibiotics, which can not only catalyze the synthesis of ß-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant ßF24G/ßW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at ßF24 and ßW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of ß-lactam antibiotics.


Subject(s)
Achromobacter , Penicillin Amidase , Penicillin Amidase/metabolism , Achromobacter/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Ampicillin/metabolism , Amoxicillin/metabolism , Monobactams
9.
Water Res ; 233: 119752, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36812814

ABSTRACT

Bioleaching is considered an alternative to traditional rare earth extraction technology. However, since rare earth elements exist as complexes in bioleaching lixivium, they cannot be directly precipitated by normal precipitants, which restricts their further development. This structurally stable complex is also a common challenge in various types of industrial wastewater treatment. In this work, a new method called a three-step precipitation process is first proposed to efficiently recover rare earth-citrate (RE-Cit) complexes from (bio)leaching lixivium. It consists of coordinate bond activation (carboxylation by pH adjustment), structure transformation (Ca2+ addition) and carbonate precipitation (soluble CO32- addition). The optimization conditions are determined to adjust the lixivium pH to around 2.0, then add calcium carbonate until the n(Ca2+): n(Cit3-) is more than 1.4:1 and lastly add sodium carbonate until n(CO32-): n(RE3+) is more than 4:1. The results of precipitation experiments using imitated lixivium show that the rare earth yield is more than 96% and the impurity aluminum yield is less than 20%. Subsequently, pilot tests (1000 L) using real lixivium were successfully conducted. The precipitation mechanism is briefly discussed and proposed by thermogravimetric analysis, Fourier infrared spectroscopy, Raman spectroscopy and UV spectroscopy. This technology is promising in the industrial application of rare earth (bio)hydrometallurgy and wastewater treatment due to its advantages of high efficiency, low cost, environmental friendliness and simple operation.


Subject(s)
Citric Acid , Metals, Rare Earth , Citrates
10.
Bioorg Chem ; 131: 106340, 2023 02.
Article in English | MEDLINE | ID: mdl-36586301

ABSTRACT

7ß-Hydroxysteroid dehydrogenases (7ß-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7ß-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7ß-HSDH (Cle7ß-HSDH). The Cle7ß-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7ß-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.


Subject(s)
Hydroxysteroid Dehydrogenases , NAD , Ursodeoxycholic Acid , Hydroxysteroid Dehydrogenases/chemistry , Hydroxysteroid Dehydrogenases/metabolism , Molecular Docking Simulation , NAD/chemistry , NADP/chemistry , Ursodeoxycholic Acid/biosynthesis
11.
J Hazard Mater ; 443(Pt A): 130151, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36270187

ABSTRACT

Pyrite-mediated arsenopyrite oxidation is an important process affecting arsenic (As) mobility. The iron sulfides-induced reactive oxidation species (ROS) can exert significant influence on As transformation. However, the impact of pyrite-arsenopyrite association on ROS production and its contribution to As transformation were rarely estimated. Here, ROS formation and the redox conversion of As during the interaction between pyrite and arsenopyrite as function of O2, pH and pyrite surface oxidation were investigated. Pyrite promoted arsenopyrite oxidation and As(III) oxidation due to heterogeneous electron transfer. The electron transfer from arsenopyrite facilitated O2 reduction on pyrite surface with increasing ROS formation. Hydroxyl radical (HO˙), superoxide (O2•)- and hydrogen peroxide (H2O2) were the main reactive species for As(III) oxidation. Iron (hydr)oxides produced from pyrite surface oxidation provided fast electron transfer channels for efficient O2 reduction as evidenced by electrochemical experiment, further verifying the promoted effect of surface-oxidized pyrite (SOP) on arsenopyrite dissolution. However, total As and As(V) obviously decreased during SOP-mediated arsenopyrite oxidation. Iron (hydr)oxides retained appreciable As through adsorption to limit its mobility, and decreased HO˙ production to inhibit As(III) oxidation via decomposing H2O2. This work furthers our understanding of arsenic transformation in the environment which has important implications for mitigating arsenic pollution.


Subject(s)
Arsenic , Reactive Oxygen Species , Hydrogen Peroxide , Sulfides , Iron , Oxidation-Reduction , Oxides
12.
Sci Total Environ ; 851(Pt 2): 158200, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36049690

ABSTRACT

Humic acid has the advantages of wide source, easy availability and environmental friendliness, which may be a good choice for inhibiting chalcopyrite biooxidation and alleviating copper pollution. However, there are few researches on the inhibitory effect and mechanism of humic acid on the biooxidation of chalcopyrite. In order to fill this knowledge gap, this study proposed and validated a novel method for inhibiting chalcopyrite biooxidation by means of humic acid. The results showed that the biooxidation of chalcopyrite could be effectively inhibited by humic acid, which consequently decreased the release of copper ions. Humic acid with a concentration of 120 ppm had the best inhibitory effect, which reduced the biooxidation efficiency of chalcopyrite from 40.7 ± 0.5 % to 29.3 ± 0.8 %. This in turn suggested that humic acid could effectively suppress the pollution of copper under these conditions. The analysis results of solution parameters, mineral surface morphology, mineral phases and element composition showed that humic acid inhibited the growth of Acidithiobacillus ferrooxidans, promoted the formation of jarosite and intensified the passivation of chalcopyrite, which effectively hindered the biooxidation of chalcopyrite, and would help to alleviate the pollution of copper.


Subject(s)
Copper , Humic Substances , Environmental Pollution
13.
J Environ Manage ; 323: 116173, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36115246

ABSTRACT

Fungus-algae symbiotic systems (FASS) are typically used to assist in the immobilization of algae and strengthen the adsorption of heavy metals. However, the adsorption behavior of the symbiotic system and the molecular regulation mechanism of extracellular proteins in the adsorption of heavy metals have not been reported in detail. In this study, a stable FCSS (fungus-cyanobacterium symbiotic system) was used to study Cd(II) adsorption behavior. The fixation efficiency of fungus to cyanobacterium reached more than 95% at pH7.0, 30 °C, 150 rpm, and a medium ratio of 100%. The biomass, chlorophyll content, and total fatty acid content of the symbiotic system were much higher than those of cyanobacterium and fungus alone. The photosynthetic fluorescence parameters showed that the presence of fungus enhanced the light tolerance of cyanobacterium. The original light energy conversion efficiency and potential activity of PSII were enhanced, indicating that symbiosis could promote the photosynthetic process of cyanobacterium. The Cd(II) adsorption efficiency can achieve 90%. The system maintained excellent adsorption after six adsorption cycles. Differential proteins were mainly enriched in areas such as metabolism, ABC transport system, and pressure response. Cd(II) stress promotes an increase in efflux proteins. Moreover, cadmium can be fixed as much as possible by secreting extracellular proteins, and the toxicity of cadmium to cells can be alleviated by regulating the metabolism of glutathione, reducing oxidative phosphorylation level, and reducing oxidative stress, thus improving the resistance to Cd(II). Meanwhile, the expression of enzymes involved in glycolysis and the pentose phosphate pathway was upregulated, while the expression of those in the TCA cycle was downregulated. The expression of substances related to PSI and PSII in the photosynthetic system and rubisco, a key enzyme in the Calvin cycle, was significantly upregulated, indicating that the glucose metabolism and photosynthetic pathways of the symbiotic system were involved in resistance to Cd toxicity. This revealed the response mechanism of the fungus-algal symbiotic system in the process of Cd adsorption, and also provided reference value for industrial application in water treatment.


Subject(s)
Cyanobacteria , Metals, Heavy , Adsorption , Cadmium/metabolism , Chlorophyll/metabolism , Fatty Acids , Fungi/metabolism , Glucose , Glutathione/metabolism , Glutathione/pharmacology , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Symbiosis
14.
Angew Chem Int Ed Engl ; 61(46): e202212720, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36151587

ABSTRACT

Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.


Subject(s)
Amino Acids , Aminobutyrates , Kinetics , Hydrophobic and Hydrophilic Interactions , Amino Acids/metabolism , Substrate Specificity
15.
Anal Biochem ; 650: 114724, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35577007

ABSTRACT

High-potential iron-sulfur proteins (HiPIPs) from extremely acidophilic chemolithotrophic non-photosynthetic Acidithiobacillus commonly play a crucial role in ferrous or sulfurous biooxidation. Acidithiobacillus exhibit important industrial applications for bioleaching valuable metals from sulfide ores. In this study, two HiPIP genes from thermophilic Acidithiobacillus caldus SM-1 were cloned and successfully expressed, and their proteins were purified. The proteins displayed a brownish color with an optical absorbance peak at approximately 385 nm and an electronic paramagnetic resonance (EPR) g value of approximately 2.01, which confirmed that the iron-sulfur cluster was correctly inserted into the active site when the proteins were generated in E. coli. The proteins were more thermostable than HiPIPs from mesophilic Acidithiobacillus. The direct electron transfer (DET) between HiPIPs and electrode was achieved by the 2-mercaptopyrimidine (MP) surface-modified gold electrodes; the redox potentials of the HiPIP1 and HiPIP2 measured by cyclic voltammetry were approximately 304.5 mV and 400.5 mV, respectively. The electron transfer rate constant was estimated to be 0.75 s-1 and 0.66 s-1, respectively. The MP/Au electrode and Au electrode showed consistent differences in heterogeneous electron transfer rates and electron transfer resistances. Bioinformatics and molecular simulations further explained the direct electron transfer between the proteins and surface-modified electrode.


Subject(s)
Acidithiobacillus , Iron-Sulfur Proteins , Acidithiobacillus/chemistry , Acidithiobacillus/genetics , Acidithiobacillus/metabolism , Electrochemistry , Escherichia coli/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Sulfur/metabolism
16.
Chemosphere ; 303(Pt 1): 134727, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35513082

ABSTRACT

Due to the bioaccumulation and non-biodegradability of cadmium, Cd can pose a serious threat to ecosystem even at low concentration. Microalgae is widely distributed photosynthetic organisms in nature, which is a promising heavy metal remover and an effective industrial sewage cleaner. However, there are few detailed reports on the short-term and long-term molecular mechanisms of microalgae under Cd stress. In this study, the adsorption behavior (growth curve, Cd removal efficiency, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic change of extracellular polymeric substances), cytotoxicity (photosynthetic pigment, MDA, GSH, H2O2, O2-) and stress response mechanism of microalgae were discussed under EC50. RNA-seq detected 1413 DEGs in 4 treatment groups. These genes were related to ribosome, nitrogen metabolism, sulfur transporter, and photosynthesis, and which been proved to be Cd-responsive DEGs. WGCNA (weighted gene co-expression network analysis) revealed two main gene expression patterns, short-term stress (381 genes) and long-term stress (364 genes). The enrichment analysis of DEGs showed that the expression of genes involved in N metabolism, sulfur transporter, and aminoacyl-tRNA biosynthesis were significantly up-regulated. This provided raw material for the synthesis of the important component (cysteine) of metal chelate protein, resistant metalloprotein and transporter (ABC transporter) in the initial stage, which was also the short-term response mechanism. Cd adsorption of the first 15 min was primary dependent on membrane transporter and beforehand accumulated EPS. Simultaneously, the up-regulated glutathione S-transferase (GSTs) family proteins played a role in the initial resistance to exogenous Cd. The damaged photosynthetic system was repaired at the later stage, the expressions of glycolysis and gluconeogenesis were up-regulated, to meet the energy and substances of physiological metabolic activities. The study is the first to provide detailed short-term and long-term genomic information on microalgae responding to Cd stress. Meanwhile, the key genes in this study can be used as potential targets for algae-mediated genetic engineering.


Subject(s)
Metals, Heavy , Synechocystis , Cadmium/metabolism , Cadmium/toxicity , Ecosystem , Hydrogen Peroxide/metabolism , Metals, Heavy/metabolism , Stress, Physiological/genetics , Sulfur/metabolism , Synechocystis/metabolism , Transcriptome
17.
Nanotechnology ; 33(31)2022 May 11.
Article in English | MEDLINE | ID: mdl-35443235

ABSTRACT

The use of microbial adsorption for metal ions to prepare novel carbon-supported metal nanomaterials has attracted growing research attention. However, the relationship between the adsorbed metal content and catalytic performance of the resulting nanomaterials is unclear. In this work,Pichia pastoris residueswas utilized to adsorb Ce(Ⅲ) at different metal ion concentrations, and then CeO2@C nanomaterials were prepared by pyrolysis. The effects of solution pH and adsorption behavior were investigated. The prepared nanostructures were characterized using electron microscopy and different spectroscopy methods, and their catalytic performances in the removal of salicylic acid from solution by catalytic ozonation were invested. The microbial residue had a metal uptake of 172.00 ± 2.82 mg· g-1at pH 6. In addition, the efficiency of total organic carbon (TOC) removal increased from 21.54% to 34.10% with an increase in metal content in the catalysts from 0 mg· g-1to 170.05 mg· g-1. After pyrolysis, the absorbed Ce(Ⅲ) metal transformed to CeO2metal nanoparticles embedded in a carbon matrix and had a core-shell CeO2@C structure. Therefore, this work not only reveals a relationship between metal content and catalytic performance, but also provides an approach for studying performance of materials with different metal contents loaded on various carriers.


Subject(s)
Metals , Nanostructures , Adsorption , Carbon , Catalysis , Ions
18.
Sci Total Environ ; 808: 152067, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863749

ABSTRACT

Extracellular polymeric substances (EPS) participate in heavy metal adsorption in the aquatic environments. Extracellular DNA (eDNA) is an essential component of EPS, but its involvement in metal binding remains ambiguous. Herein, the role of eDNA in Cd(II) and Ni(II) adsorption was described using a combination of semi-quantitative and qualitative approaches. EPS were extracted from Burkholderia sp. MBR-1 and eDNA accounted for 6.9% of the total mass of EPS. The eDNA in the extracted EPS was digested using the DNase II to prepare an eDNA-free EPS sample. Potentiometric titration unveiled that the number of total binding sites of the eDNA-free EPS was 19% lower than the untreated EPS. The Cd(II) and Ni(II) adsorption capacity of the eDNA-free EPS was lower than the untreated EPS at the pH range of 4-7. At pH 7, the results of batch adsorption experiments showed that removing eDNA from EPS resulted in declines of 12.6% and 15.7% in the adsorption capacities for Cd(II) and Ni(II), respectively. Furthermore, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy unraveled that the phosphoryl groups and purines of eDNA are responsible for Cd(II) and Ni(II) complexation. The results demonstrated that eDNA plays an essential role in heavy metal adsorption.


Subject(s)
Metals, Heavy , Adsorption , DNA , Extracellular Polymeric Substance Matrix , Spectroscopy, Fourier Transform Infrared
19.
Chemosphere ; 289: 133185, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34883128

ABSTRACT

A high bioflocculant-producing bacterial strain was identified and named Bacillus subtilis ZHX3. Single-factor experiments suggested that 10 g/L starch and 5 g/L yeast extract were optimal for strain ZHX3 to produce bioflocculant MBF-ZHX3. The maximum flocculating rate reached 95.5%, and 3.14 g/L product was extracted after 3 days of cultivation. MBF-ZHX3 was mainly composed of polysaccharides (77.2%) and protein (14.8%). The polysaccharides contained 28.9% uronic acid and 3.7% amino sugar. Rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid in a molar ratio of 0.35:1.83:3.09:12.66:0.46:3.81 were detected. MBF-ZHX3 had a molecular weight of 10,028 Da and contained abundant groups (-OH, CO, >PO, C-O-C) contributing to flocculation. Adsorption and bridging was considered as the main flocculation mechanism. MBF-ZHX3 was more effective in decolorizing dyes, removing heavy metals and flotation reagents compared to polyacrylamide. The results implied that MBF-ZHX3 has the potential to substitute polyacrylamide in wastewater treatment because of its excellent biological and environmental benefits.


Subject(s)
Bacillus subtilis , Environmental Pollutants , Flocculation , Hydrogen-Ion Concentration , Polysaccharides
20.
Front Microbiol ; 12: 663757, 2021.
Article in English | MEDLINE | ID: mdl-34040597

ABSTRACT

Low-temperature biohydrometallurgy is implicated in metal recovery in alpine mining areas, but bioleaching using microbial consortia at temperatures <10°C was scarcely discussed. To this end, a mixed culture was used for chalcopyrite bioleaching at 6°C. The mixed culture resulted in a higher copper leaching rate than the pure culture of Acidithiobacillus ferrivorans strain YL15. High-throughput sequencing technology showed that Acidithiobacillus spp. and Sulfobacillus spp. were the mixed culture's major lineages. Cyclic voltammograms, potentiodynamic polarization and electrochemical impedance spectroscopy unveiled that the mixed culture enhanced the dissolution reactions, decreased the corrosion potential and increased the corrosion current, and lowered the charge transfer resistance and passivation layer impedance of the chalcopyrite electrode compared with the pure culture. This study revealed the mechanisms via which the mixed culture promoted the chalcopyrite bioleaching.

SELECTION OF CITATIONS
SEARCH DETAIL
...