Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311848, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556630

ABSTRACT

Designing biomimetic nanomaterials with peroxidase (POD)-like activity at neutral pH remains a significant challenge. An S-doping strategy is developed to afford an iron single-atom nanomaterial (Fe1@CN-S) with high POD-like activity under neutral conditions. To the best of knowledge, there is the first example on the achievement of excellent POD-like activity under neutral conditions by regulating the active site structure. S-doping not only promotes the dissociation of the N─H bond in 3,3″,5,5″-tetramethylbenzidine (TMB), but also facilitates the desorption of OH* by the transformation of iron species' spin states from middle-spin (MS FeII) to low-spin (LS FeII). Meanwhile, LS FeII sites typically have more unfilled d orbitals, thereby exhibiting stronger interactions with H2O2 than MS FeII, which can enhance POD-like activity. Finally, a one-pot visual detection of glucose at pH 7 is performed, demonstrating the best selectivity and sensitivity than previous reports.

2.
J Hazard Mater ; 470: 134127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554521

ABSTRACT

Developing methods for the accurate identification and analysis of sulfur-containing compounds (SCCs) is of great significance because of their essential roles in living organisms and the diagnosis of diseases. Herein, Se-doping improved oxidase-like activity of iron-based carbon material (Fe-Se/NC) was prepared and applied to construct a four-channel colorimetric sensor array for the detection and identification of SCCs (including biothiols and sulfur-containing metal salts). Fe-Se/NC can realize the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by activating O2 without relying on H2O2, which can be inhibited by different SCCs to diverse degrees to produce different colorimetric response changes as "fingerprints" on the sensor array. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that nine kinds of SCCs could be well discriminated. The sensor array was also applied for the detection of SCCs with a linear range of 1-50 µM and a limit of detection of 0.07-0.2 µM. Moreover, colorimetric sensor array inspired by the different levels of SCCs in real samples were used to discriminate cancer cells and food samples, demonstrating its potential application in the field of disease diagnosis and food monitoring. ENVIRONMENTAL IMPLICATIONS: In this work, a four-channel colorimetric sensor array for accurate SCCs identification and detection was successfully constructed. The colorimetric sensor array inspired by the different levels of SCCs in real samples were also used to discriminate cancer cells and food samples. Therefore, this Fe-Se/NC based sensor array is expected to be applied in the field of environmental monitoring and environment related disease diagnosis.


Subject(s)
Benzidines , Carbon , Colorimetry , Iron , Carbon/chemistry , Iron/chemistry , Iron/analysis , Colorimetry/methods , Benzidines/chemistry , Humans , Sulfur Compounds/analysis , Sulfur Compounds/chemistry , Principal Component Analysis , Cell Line, Tumor , Limit of Detection , Oxidation-Reduction , Oxidoreductases , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
3.
Materials (Basel) ; 16(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37895678

ABSTRACT

Numerous technological advancements in the 21st century depend on the creation of novel materials possessing enhanced properties; there is a growing reliance on materials that can be optimized to serve multiple functions. To efficiently save time and meet the requirements of diverse applications, high-throughput and combinatorial approaches are increasingly employed to explore and design superior materials. Among them, gradient thin-film deposition is one of the most mature and widely used technologies for high-throughput preparation of material libraries. This review summarizes recent progress in gradient thin-film deposition fabricated by magnetron sputtering, multi-arc ion plating, e-beam evaporation, additive manufacturing, and chemical bath deposition, providing readers with a fundamental understanding of this research field. First, high-throughput synthesis methods for gradient thin films are emphasized. Subsequently, we present the characteristics of combinatorial films, including microstructure, oxidation, corrosion tests, and mechanical properties. Next, the screening methods employed for evaluating these properties are discussed. Furthermore, we delve into the limitations of high-throughput preparation and characterization techniques for combinatorial films. Finally, we provide a summary and offer our perspectives.

4.
Materials (Basel) ; 15(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234110

ABSTRACT

Lightweight structural alloys have broad application prospects in aerospace, energy, and transportation fields, and it is crucial to understand the hot deformation behavior of novel alloys for subsequent applications. The deformation behavior and microstructure evolution of a new Al-Zn-Mg-Li-Cu alloy was studied by hot compression experiments at temperatures ranging from 300 °C to 420 °C and strain rates ranging from 0.01 s-1 to 10 s-1. The as-cast Al-Zn-Mg-Li-Cu alloy is composed of an α-Al phase, an Al2Cu phase, a T phase, an η phase, and an η' phase. The constitutive relationship between flow stress, temperature, and strain rate, represented by Zener-Hollomon parameters including Arrhenius terms, was established. Microstructure observations show that the grain size and the fraction of DRX increases with increasing deformation temperature. The grain size of DRX decreases with increasing strain rates, while the fraction of DRX first increases and then decreases. A certain amount of medium-angle grain boundaries (MAGBs) was present at both lower and higher deformation temperatures, suggesting the existence of continuous dynamic recrystallization (CDRX). The cumulative misorientation from intragranular to grain boundary proves that the CDRX mechanism of the alloy occurs through progressive subgrain rotation. This paper provides a basis for the deformation process of a new Al-Zn-Mg-Li-Cu alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...