Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38215741

ABSTRACT

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungicides, Industrial , Pneumonia , Animals , Mice , Amphotericin B/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Fungicides, Industrial/pharmacology , Pneumonia/drug therapy , Pneumonia/microbiology
2.
mBio ; 14(4): e0099323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37432033

ABSTRACT

Linker histone H1 plays a crucial role in various biological processes, including nucleosome stabilization, high-order chromatin structure organization, gene expression, and epigenetic regulation in eukaryotic cells. Unlike higher eukaryotes, little about the linker histone in Saccharomyces cerevisiae is known. Hho1 and Hmo1 are two long-standing controversial histone H1 candidates in budding yeast. In this study, we directly observed at the single-molecule level that Hmo1, but not Hho1, is involved in chromatin assembly in the yeast nucleoplasmic extracts (YNPE), which can replicate the physiological condition of the yeast nucleus. The presence of Hmo1 facilitates the assembly of nucleosomes on DNA in YNPE, as revealed by single-molecule force spectroscopy. Further single-molecule analysis showed that the lysine-rich C-terminal domain (CTD) of Hmo1 is essential for the function of chromatin compaction, while the second globular domain at the C-terminus of Hho1 impairs its ability. In addition, Hmo1, but not Hho1, forms condensates with double-stranded DNA via reversible phase separation. The phosphorylation fluctuation of Hmo1 coincides with metazoan H1 during the cell cycle. Our data suggest that Hmo1, but not Hho1, possesses some functionality similar to that of linker histone in Saccharomyces cerevisiae, even though some properties of Hmo1 differ from those of a canonical linker histone H1. Our study provides clues for the linker histone H1 in budding yeast and provides insights into the evolution and diversity of histone H1 across eukaryotes. IMPORTANCE There has been a long-standing debate regarding the identity of linker histone H1 in budding yeast. To address this issue, we utilized YNPE, which accurately replicate the physiological conditions in yeast nuclei, in combination with total internal reflection fluorescence microscopy and magnetic tweezers. Our findings demonstrated that Hmo1, rather than Hho1, is responsible for chromatin assembly in budding yeast. Additionally, we found that Hmo1 shares certain characteristics with histone H1, including phase separation and phosphorylation fluctuations throughout the cell cycle. Furthermore, we discovered that the lysine-rich domain of Hho1 is buried by its second globular domain at the C-terminus, resulting in the loss of function that is similar to histone H1. Our study provides compelling evidence to suggest that Hmo1 shares linker histone H1 function in budding yeast and contributes to our understanding of the evolution of linker histone H1 across eukaryotes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Animals , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA/metabolism , Epigenesis, Genetic , Histones/metabolism , Lysine/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/genetics
3.
Front Microbiol ; 13: 1076965, 2022.
Article in English | MEDLINE | ID: mdl-36687641

ABSTRACT

Rapid, accurate, and label-free detection of pathogenic bacteria and antibiotic resistance at single-cell resolution is a technological challenge for clinical diagnosis. Overcoming the cumbersome culture process of pathogenic bacteria and time-consuming antibiotic susceptibility assays will significantly benefit early diagnosis and optimize the use of antibiotics in clinics. Raman spectroscopy can collect molecular fingerprints of pathogenic bacteria in a label-free and culture-independent manner, which is suitable for pathogen diagnosis at single-cell resolution. Here, we report a method based on Raman spectroscopy combined with machine learning to rapidly and accurately identify pathogenic bacteria and detect antibiotic resistance at single-cell resolution. Our results show that the average accuracy of identification of 12 species of common pathogenic bacteria by the machine learning method is 90.73 ± 9.72%. Antibiotic-sensitive and antibiotic-resistant strains of Acinetobacter baumannii isolated from hospital patients were distinguished with 99.92 ± 0.06% accuracy using the machine learning model. Meanwhile, we found that sensitive strains had a higher nucleic acid/protein ratio and antibiotic-resistant strains possessed abundant amide II structures in proteins. This study suggests that Raman spectroscopy is a promising method for rapidly identifying pathogens and detecting their antibiotic susceptibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...