Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 22: 100513, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636173

ABSTRACT

Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses. We surprisingly discovered that AS-EVs demonstrated significant changes in size distribution and plasma concentration compared to control group (CN) EVs. AS-EVs were further characterized by various differentially expressed proteins (DEPs) closely associated with biological, metabolic and immune regulations and were functionally important in potentially underlying multiple diseases. Notably, we first identified the lipid raft protein Stomatin as an essential biomarker expressed on the surface of AS-EVs. These findings collectively reveal that EVs are a significant function-related liquid biopsy indicator that mediate circulation alterations impinged by psychological stress, while also supporting the idea that psychological stress-associated EV-stomatin can be used as a biomarker for potentially predicting acute stress responses and monitoring psychological status. Our study will pave an avenue for implementing routine plasma EV-based theranostics in the clinic.

2.
J Vis Exp ; (188)2022 10 17.
Article in English | MEDLINE | ID: mdl-36314805

ABSTRACT

Circulating and tissue-resident extracellular vesicles (EVs) represent promising targets as novel theranostic biomarkers, and they emerge as important players in the maintenance of organismal homeostasis and the progression of a wide spectrum of diseases. While the current research focuses on the characterization of endogenous exosomes with the endosomal origin, microvesicles blebbing from the plasma membrane have gained increasing attention in health and sickness, which are featured by an abundance of surface molecules recapitulating the membrane signature of parent cells. Here, a reproducible procedure is presented based on differential centrifugation for extracting and characterizing EVs from the plasma and solid tissues, such as the bone. The protocol further describes subsequent profiling of surface antigens and protein cargos of EVs, which are thus traceable for their derivations and identified with components related to potential function. This method will be useful for correlative, functional, and mechanistic analysis of EVs in biological, physiological, and pathological studies.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Exosomes/metabolism , Cell-Derived Microparticles/metabolism , Biomarkers/metabolism , Plasma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...