Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399922

ABSTRACT

In the field of high-frequency communications devices, there is an urgent need to develop high-performance copper clad laminates (CCLs) with low dielectric loss (Df) plus good flame retardancy and thermal stability. The hydrocarbon resin styrene-butadiene block copolymer (PSB) was modified with the flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/polyhedral oligomeric silsesquioxanes (DOPO-POSS) to meet the demands of high-frequency and high-speed applications. The resulting DOPO-POSS-modified PSB was used as the resin matrix along with other additives to fabricate PSB/DOPO-POSS laminates. At a high-frequency of 10 GHz, the laminates containing 20 wt.% of DOPO-POSS and with a thickness of 0.09 mm exhibited a Df of 0.00328, which is much lower compared with the commercial PSB/PX-200 composite (Df: 0.00498) and the PSB without flame retardancy (Df: 0.00453). Afterwards, glass fiber cloth (GF) was used as a reinforcing material to manufacture GF-PSB/DOPO-POSS composite laminates with a thickness of 0.25 mm. The flame retardancy of GF-PSB/DOPO-POSS composite laminate reached vertical burning (UL-94) V-1 grade, and GF-PSB/DOPO-POSS exhibited higher thermal and dynamic mechanical properties than GF-PSB/PX-200. The results of a limited oxygen index (LOI) and self-extinguishing time tests also demonstrated the superior flame-retardant performance of DOPO-POSS compared with PX-200. The investigation indicates that GF-PSB/DOPO-POSS composite laminates have significant potential for use in fabricating a printed circuit board (PCB) for high-frequency and high-speed applications.

2.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984012

ABSTRACT

The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.

3.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202648

ABSTRACT

Selective oxidation of ethylbenzene to acetophenne is an important process in both organic synthesis and fine chemicals diligence. The cobalt-based catalysts combined with nitrogen-doped carbon have received great attention in ethylbenzene (EB) oxidation. Here, a series of cobalt catalysts with metallic cobalt nanoparticles (NPs) encapsulated in nitrogen-doped graphite-like carbon shells (Co@NC) have been constructed through the one-pot pyrolysis method in the presence of different nitrogen-containing compounds (urea, dicyandiamide and melamine), and their catalytic performance in solvent-free oxidation of EB with tert-butyl hydrogen peroxide (TBHP) as an oxidant was investigated. Under optimized conditions, the UCo@NC (urea as nitrogen source) could afford 95.2% conversion of EB and 96.0% selectivity to acetophenone, and the substrate scalability was remarkable. Kinetics show that UCo@NC contributes to EB oxidation with an apparent activation energy of 32.3 kJ/mol. The synergistic effect between metallic cobalt NPs and nitrogen-doped graphite-like carbon layers was obviously observed and, especially, the graphitic N species plays a key role during the oxidation reaction. The structure-performance relationship illustrated that EB oxidation was a free radical reaction through 1-phenylethanol as an intermediate, and the possible reaction mechanistic has been proposed.

4.
Exp Parasitol ; 121(1): 64-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18977349

ABSTRACT

The first and second internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene for six Babesia spp. isolated from different geographic origins were characterized. Varying degrees of ITS1 and ITS2 intra- and inter-species sequence polymorphism were found among these isolates. Phylogenetic analysis of the ITS1-5.8S gene-ITS2 region clearly separated the isolates into two clusters. One held an unidentified Babesia sp. transmitted by Hyalomma anatolicum anatolicum. The second held five other isolates, which were considered to be Babesia motasi. Each Babesia species cluster possessed ITS1 and ITS2 of unique size(s) and species specific nucleotide sequences. The results showed that ITS1, ITS2 and the complete ITS1-5.8S-ITS2 region could be used to discriminate these ovine Babesia spp. effectively.


Subject(s)
Babesia/classification , Babesia/genetics , DNA, Ribosomal Spacer/chemistry , Phylogeny , Animals , Base Sequence , China , Genetic Markers , Ixodidae , Molecular Sequence Data , Polymorphism, Genetic , RNA, Ribosomal, 5.8S/genetics , Sequence Alignment , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...