Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1000949, 2023.
Article in English | MEDLINE | ID: mdl-36910645

ABSTRACT

Background: Ewing's sarcoma (ES) is one of the most prevalent malignant bone tumors worldwide. However, the molecular mechanisms of the genes and signaling pathways of ES are still not well sufficiently comprehended. To identify candidate genes involved in the development and progression of ES, the study screened for key genes and biological pathways related to ES using bioinformatics methods. Methods: The GSE45544 and GSE17618 microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. A protein-protein interaction (PPI) network was built, and key module analysis was performed using STRING and Cytoscape. A core-gene was gained and was validated by the validation dataset GSE67886 and immunohistochemistry (IHC). The diagnostic value and prognosis evaluation of ES were executed using, respectively, the ROC approach and Cox Regression. Results: A total of 187 DEGs, consisting of 56 downregulated genes and 131 upregulated genes, were identified by comparing the tumor samples to normal samples. The enriched functions and pathways of the DEGs, including cell division, mitotic nuclear division, cell proliferation, cell cycle, oocyte meiosis, and progesterone-mediated oocyte maturation, were analyzed. There were 149 nodes and 1246 edges in the PPI network, and 15 hub genes were identified according to the degree levels. The core gene (UBE2T) showed high expression in ES, validated by using GSE67886 and IHC. The ROC analysis revealed UBE2T had outstanding diagnostic value in ES (AUC = 0.75 in the training set, AUC = 0.90 in the validation set). Kaplan-Meier (analysis of survival rate) and Cox Regression analyses indicated that UBE2T was a sign of adverse results for sufferers with ES. Conlusion: UBE2T was a significant value biomarker for diagnosis and treatment of ES, thereby presenting a novel potential therapeutic target for ES as well as a new perspective for assessing the effect of treatment and prognostic prediction.

2.
Sci China Life Sci ; 65(10): 1917-1928, 2022 10.
Article in English | MEDLINE | ID: mdl-35918604

ABSTRACT

Sepsis, defined as life-threatening organ failure caused by a dysregulated host response to severe infection, is a major cause of death among intensive care unit patients. Therapies targeting on immunomodulatory is a new research field in sepsis treatment. B- and T-lymphocyte attenuator (BTLA) is an inhibitory costimulatory factor molecule of B and T lymphocytes. Studies have shown that elevated expression of BTLA in lymphocytes can reduce mortality in sepsis, but its regulatory compounds and the underlying mechanism remains to be elucidated. Here, we show that treatment with CP-673451 significantly decreases mortality of septic mouse. CP-673451 is a PDGFR kinase inhibitor which can promote the expression of BTLA, inhibit the release of chemokines such as CXCL13, and reduce first the chemotaxis of B cells to the peripheral blood and vital organs. CP-673451 also inhibits both the release of cytokines and chemokines such as IL-1ß, IL-6, IL-10, TNF-α, CCL1, CCL2 and CCL7 and reduces both the chemotactic ability of T cells. This suggests that CP-673451 may prevent septic death by inhibiting lymphocyte chemotaxis and alleviating "cytokine storm". In conclusion, our study provides a new therapeutic target and an effective compound for sepsis treatment.


Subject(s)
Sepsis , T-Lymphocytes , Animals , Chemokines , Cytokines/metabolism , Interleukin-10 , Interleukin-6 , Mice , Receptors, Immunologic/metabolism , Sepsis/drug therapy , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha
3.
Mol Ther ; 30(3): 1227-1238, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34933101

ABSTRACT

Immunosuppression in response to severe sepsis remains a serious human health concern. Evidence of sepsis-induced immunosuppression includes impaired T lymphocyte function, T lymphocyte depletion or exhaustion, increased susceptibility to opportunistic nosocomial infection, and imbalanced cytokine secretion. CD4 T cells play a critical role in cellular and humoral immune responses during sepsis. Here, using an RNA sequencing assay, we found that the expression of T cell-containing immunoglobulin and mucin domain-3 (Tim-3) on CD4 T cells in sepsis-induced immunosuppression patients was significantly elevated. Furthermore, the percentage of Tim-3+ CD4 T cells from sepsis patients was correlated with the mortality of sepsis-induced immunosuppression. Conditional deletion of Tim-3 in CD4 T cells and systemic Tim-3 deletion both reduced mortality in response to sepsis in mice by preserving organ function. Tim-3+ CD4 T cells exhibited reduced proliferative ability and elevated expression of inhibitory markers compared with Tim-3-CD4 T cells. Colocalization analyses indicated that HMGB1 was a ligand that binds to Tim-3 on CD4 T cells and that its binding inhibited the NF-κB signaling pathway in Tim-3+ CD4 T cells during sepsis-induced immunosuppression. Together, our findings reveal the mechanism of Tim-3 in regulating sepsis-induced immunosuppression and provide a novel therapeutic target for this condition.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Sepsis , Animals , CD4-Positive T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immunosuppression Therapy , Mice , NF-kappa B/metabolism , Sepsis/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...