Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; : 168609, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38750722

ABSTRACT

The increasing research evidence indicates that long non-coding RNAs (lncRNAs) play important roles in regulating biological processes and are closely associated with many human diseases. Computational methods have emerged as indispensable tools for identifying associations between long non-coding RNA (lncRNA) and diseases, primarily due to the time-consuming and costly nature of traditional biological experiments. Given the scarcity of verified lncRNA-disease associations, the intensifying focus on deep learning is playing a crucial role in refining the accuracy of predictive models. Moreover, the contrastive learning method exhibits a clear advantage in situations where data is scarce or annotation costs are high. In this paper, we leverage the advantages of graph neural networks and contrastive learning to innovatively propose a similarity-guided graph contrastive learning (SGGCL) model for predicting lncRNA-disease associations. In the SGGCL model, we employ a novel similarity-guided graph data augmentation method to generate high-quality positive and negative sample pairs, addressing the scarcity of verified data. Additionally, we utilize the RWR algorithm and a graph convolutional neural network for contrastive learning, facilitating the capture of global topology and high-level node embeddings. The experimental results on several datasets demonstrate the superior predictive performance and scalability of our method in lncRNA-disease association prediction compared to state-of-the-art methods.

2.
J Cell Mol Med ; 28(7): e18224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509739

ABSTRACT

Drug-target interaction (DTI) prediction is essential for new drug design and development. Constructing heterogeneous network based on diverse information about drugs, proteins and diseases provides new opportunities for DTI prediction. However, the inherent complexity, high dimensionality and noise of such a network prevent us from taking full advantage of these network characteristics. This article proposes a novel method, NGCN, to predict drug-target interactions from an integrated heterogeneous network, from which to extract relevant biological properties and association information while maintaining the topology information. It focuses on learning the topology representation of drugs and targets to improve the performance of DTI prediction. Unlike traditional methods, it focuses on learning the low-dimensional topology representation of drugs and targets via graph-based convolutional neural network. NGCN achieves substantial performance improvements over other state-of-the-art methods, such as a nearly 1.0% increase in AUPR value. Moreover, we verify the robustness of NGCN through benchmark tests, and the experimental results demonstrate it is an extensible framework capable of combining heterogeneous information for DTI prediction.


Subject(s)
Drug Design , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...