Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(25): e2401252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38605686

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large-scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium-based electrode materials has been hindered by challenging problems such as poor cyclability and low-rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free-standing VS2/Ti3C2Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g-1 at 0.2 A g-1. Furthermore, the flexible Zn-metal free in-plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long-term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium-based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630904

ABSTRACT

Solar-driven interfacial evaporation and purification is a promising solar energy conversion technology to produce clean water or solve water scarcity. Although wood-based photothermal materials have attracted particular interest in solar water purification and desalination due to their rapid water supply and great heat localization, challenges exist given their complicated processing methods and relatively poor stability. Herein, we propose a facile approach for fabricating a bilayered wood-poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (wood-PEDOT:PSS) hydrogel interfacial evaporator by direct drop-casting and dry-annealing. Benefiting from the unique combined merits of the wood-PEDOT:PSS hydrogel evaporator, i.e., excellent light absorption (~99.9%) and efficient photothermal conversion of nanofibrous PEDOT:PSS and the strong hydrophilicity and fast water transport from wood, the as-fabricated bilayered wood-PEDOT:PSS hydrogel evaporator demonstrates a remarkably high evaporation rate (~1.47 kg m-2 h-1) and high energy efficiency (~75.76%) at 1 kW m-2. We further demonstrate the practical applications of such an evaporator for sewage purification and desalination, showing outstanding performance stability and partial salt barrier capability against a continuous 10-day test in simulated seawater and an ultrahigh ion removal rate of 99.9% for metal ion-containing sewage. The design and fabrication of such novel, efficient wood-based interfacial evaporators pave the way for large-scale applications in solar water purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...