Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.599
Filter
1.
Oncogene ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773262

ABSTRACT

Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167234, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38750769

ABSTRACT

The 5-year survival for non-small cell lung cancer (NSCLC) remains <20 %, primarily due to the early symptoms of lung cancer are inconspicuous. Prompt identification and medical intervention could serve as effective strategies for mitigating the death rate. We therefore set out to identify biomarkers to help diagnose NSCLC. CircRNA microarray and qRT-PCR reveal that sputum circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC, which can enhance the proliferation and clone formation, regulate the cell cycle, and accelerate the migration and invasion of NSCLC cells. Circ_0006949 and miR-4673 are predominantly co-localized in the cytoplasm of NSCLC cell lines and tissues; it upregulates GLUL by adsorption of miR-4673 through competing endogenous RNAs mechanism. The circ_0006949/miR-4673/GLUL axis exerts pro-cancer effects in vitro and in vivo. Circ_0006949 can boost GLUL catalytic activity, and they are highly expressed in NSCLC tissues and correlate with poor prognosis. In summary, circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC. This novel sputum circRNA is statistically more predictive than conventional serum markers for NSCLC diagnosis. Non-invasive detection of patients with early-stage NSCLC using sputum has shown good potential for routine diagnosis and possible screening.

3.
ACS Appl Mater Interfaces ; 16(20): 25856-25868, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726921

ABSTRACT

Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1ß, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Photoacoustic Techniques , Animals , Macrophages/metabolism , Mice , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/therapy , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Copper/chemistry , Copper/pharmacology
4.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
5.
Transl Neurosci ; 15(1): 20220334, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38623573

ABSTRACT

Background: Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR. Method: We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting. Results: Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR. Conclusion: Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.

6.
Int Immunopharmacol ; 133: 112066, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615377

ABSTRACT

Acevaltrate is a natural product isolated from the roots of Valeriana glechomifolia F.G.Mey. (Valerianaceae) and has been shown to exhibit anti-cancer activity. However, the mechanism by which acevaltrate inhibits tumor growth is not fully understood. We here demonstrated the effect of acevaltrate on hypoxia-inducible factor-1α (HIF-1α) expression. Acevaltrate showed a potent inhibitory activity against HIF-1α induced by hypoxia in various cancer cells. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently. Further analysis revealed that acevaltrate inhibited HIF-1α protein synthesis and promoted degradation of HIF-1α protein, without affecting the expression level of HIF-1α mRNA. Moreover, the phosphorylation levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by acevaltrate. In addition, acevaltrate promoted apoptosis and inhibited proliferation, which was potentially mediated by suppression of HIF-1α. We also found that acevaltrate administration inhibited tumor growth in mouse xenograft model. Taken together, these results suggested that acevaltrate was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of acevaltrate against cancers.


Subject(s)
Apoptosis , Cell Proliferation , Hypoxia-Inducible Factor 1, alpha Subunit , TOR Serine-Threonine Kinases , Valerian , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Valerian/chemistry , Xenograft Model Antitumor Assays , Mice , Mice, Nude , Mice, Inbred BALB C , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
7.
Article in English | MEDLINE | ID: mdl-38652005

ABSTRACT

Two Gram-negative, aerobic, rod-shaped bacterial strains, 7MK25T and 6Y81T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain 7MK25T showed the highest similarity (93.6 %) to Methyloferula stellata AR4T, followed by Bosea thiooxidans DSM 9653T (93.3 %). Strain 6Y81T had the highest similarity of 97.9 % to Lichenibacterium minor RmlP026T, followed by Lichenibacterium ramalinae RmlP001T (97.2 %). Phylogenomic analysis using the UBCG and PhyloPhlAn methods consistently showed that strain 7MK25T formed a sister clade to Boseaceae, while strain 6Y81T formed an independent clade within the genus Lichenibacterium, both in the order Hyphomicrobiales. The digital DNA-DNA hybridization and average nucleotide identity values between strains 7MK25T, 6Y81T and their close relatives were in the ranges of 19.1-29.9 % and 72.5-85.5 %, respectively. The major fatty acids of 7MK25T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C16 : 0 and C17 : 0 cyclo, while those of 6Y81T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0 and C16 : 0 3-OH. Strains 7MK25T and 6Y81T took diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as their dominant polar lipids, and Q-10 as their major respiratory quinone. On the basis of phenotypic and phylogenetic data, strain 7MK25T is proposed to represent a novel species of a novel genus with name Terrirubrum flagellatum gen. nov., sp. nov., within a novel family Terrirubraceae fam. nov., with 7MK25T (=KCTC 62738T=GDMCC 1.1452T) as its type strain. Strain 6Y81T represents a novel species in the genus Lichenibacterium, for which the name Lichenibacterium dinghuense sp. nov. (type strain 6Y81T=KACC 21 727T=GDMCC 1.2176T) is proposed. Rhodoblastaceae fam. nov. with Rhodoblastus as the type genus is also proposed to solve the non-monophylectic problem of the family Roseiarcaceae.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Forests , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Ubiquinone
8.
Article in English | MEDLINE | ID: mdl-38581320

ABSTRACT

Objective: Language developmental delay is a common developmental disorder in children. This study stands out by conducting a comparative analysis between conventional intervention and early comprehensive intervention in children under and over 3 years of age. Unlike previous studies, our research delves into the distinctive impacts of these interventions on various developmental aspects, such as adaptive behavior, gross and fine motor skills, language, and personal social behavior. Methods: The research subjects were children diagnosed with language developmental delay who received intervention treatment at Quanzhou Children's Hospital between January 2021 and December 2022. After excluding children who did not meet the complete inclusion criteria, a total of 80 cases were included in the study. First, the clinical characteristics of all children were analyzed by separating the children by age and quantifying developmental quotients. Subsequently, the children were divided into either a control group or a research group. Children in both groups received conventional intervention, and those in the research group were also given early comprehensive intervention. Each group consisted of 40 children, and the intervention effects of the 2 groups were compared and discussed. Results: Children over 3 years of age had significantly lower developmental quotient values in various developmental areas (adaptive behavior, gross motor skills, fine motor skills, language, and personal social behavior) than those under 3 years of age (all P < .001). After the intervention, the assessment results of the research group using the Sign-Significant Language Developmental Delay Assessment Method were significantly better than those of the control group (all P < .001). After the intervention, the research group showed significant increases in speech and language expression, auditory perception and comprehension, visual-related understanding and expression, and total score, as assessed using the Early Language Development Progress Scale, compared with the control group (P = .034 for poor communication attitude, P = .028 for abnormal motor issues, and P = .042 for abnormal language comprehension abilities). After the intervention, all indicators of social behavior abilities in the research group were significantly higher than those in the control group (P = .019 for independent living skills, P = .024 for motor skills, P = .047 for homework performance, P = .017 for social interactions, P = .035 for group activity capabilities, and P = .022 for self-management ability scores), as assessed by the Infant to Middle School Social Life Skills Scale. Conclusion: Language developmental delay is a common childhood developmental disorder with a higher prevalence among males. Most cases are observed in children under 3 years of age, and as they age, they are more likely to develop global developmental delays. Early comprehensive intervention can significantly improve children's developmental status and enhance their social behavior abilities. Understanding the clinical characteristics of language developmental delay and early diagnosis, as well as implementing comprehensive intervention measures, are crucial for helping children overcome language difficulties. Through collaborative efforts, we can assist these children in realizing their full potential and achieving better language and social development.

9.
Am J Transl Res ; 16(3): 768-780, 2024.
Article in English | MEDLINE | ID: mdl-38586086

ABSTRACT

BACKGROUND: Serum phosphate levels remain insufficiently controlled in chronic kidney disease (CKD) patients, and novel therapeutic strategies are needed. Blocking intestinal phosphate absorption mediated by sodium-dependent phosphate cotransporter type 2b (NPT2b) holds promise as one such strategy. METHODS: The in vitro cellular potency of DZ1462 was evaluated using a radioactive Pi uptake assay on stable Chinese hamster ovary (CHO) cell clones transfected with human NPT2b (hNPT2b) or rat NPT2b (rNPT2b). The ability of DZ1462 to inhibit phosphate absorption was studied in vivo in an acute model after oral bolus challenge with 33PO4 and in an adenine-induced chronic hyperphosphatemia rat model. PK and minitox was also evaluated. RESULTS: The cellular assays with the hNPT2b-CHO and rNPT2b-CHO clones showed that DZ1462 significantly and potently inhibited phosphate uptake. In vivo, in a chronic Pi-fed rat model, DZ1462 effectively inhibited intestinal Pi uptake. In a hyperphosphatemia rat model, DZ1462 significantly inhibited Pi uptake, and DZ1462 in combination with sevelamer had a synergistic effect. The pharmacokinetics (PK) study confirmed that DZ1462 is a gastrointestinal (GI)-restricted compound that can remain in the intestine for a sufficient duration. In addition, DZ1462 also reduced cardiovascular events and ameliorated osteoporosis in a CKD animal model. CONCLUSIONS: This study revealed that a GI-restricted NPT2b inhibitor DZ1462 potently inhibits NPT2b in vitro and blocks intestinal phosphate uptake in multiple animal models with potential to reduce various cardiovascular events in CKD models. Therefore, DZ1462 may be useful to treat renal disease patients who have shown an unsatisfactory response to phosphate binders.

10.
Adv Sci (Weinh) ; : e2309517, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647405

ABSTRACT

Intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA) is the primary treatment for ischemic stroke. However, rtPA treatment can substantially increase blood-brain barrier (BBB) permeability and susceptibility to hemorrhagic transformation. Herein, the mechanism underlying the side effects of rtPA treatment is investigated and demonstrated that ferroptosis plays an important role. The ferroptosis inhibitor, liproxstatin-1 (Lip) is proposed to alleviate the side effects. A well-designed macrocyclic carrier, glucose-modified azocalix[4]arene (GluAC4A), is prepared to deliver Lip to the ischemic site. GluAC4A bound tightly to Lip and markedly improved its solubility. Glucose, modified at the upper rim of GluAC4A, imparts BBB targeting to the drug delivery system owing to the presence of glucose transporter 1 on the BBB surface. The responsiveness of GluAC4A to hypoxia due to the presence of azo groups enabled the targeted release of Lip at the ischemic site. GluAC4A successfully improved drug accumulation in the brain, and Lip@GluAC4A significantly reduced ferroptosis, BBB leakage, and neurological deficits induced by rtPA in vivo. These findings deepen the understanding of the side effects of rtPA treatment and provide a novel strategy for their effective mitigation, which is of great significance for the treatment and prognosis of patients with ischemic stroke.

11.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623669

ABSTRACT

BACKGROUND: We aimed to evaluate the diagnostic capabilities of Chinese laboratories for inherited metabolic disorders (IMDs) using gas chromatography-mass spectrometry (GC-MS) on urine samples. Meanwhile, based on the result of the pilot external quality assessment (EQA) scheme, we hope to establish a standardized and reliable procedure for future EQA practice. METHODS: We recruited laboratories that participated in the EQA of quantitative analysis of urinary organic acids with GC-MS before joining the surveys. In each survey, a set of five real urine samples was distributed to each participant. The participants should analyze the sample by GC-MS and report the "analytical result", "the most likely diagnosis", and "recommendation for further tests" to the NCCL before the deadline. RESULTS: A total of 21 laboratories participated in the scheme. The pass rates were 94.4% in 2020 and 89.5% in 2021. For all eight IMDs tested, the analytical proficiency rates ranged from 84.7% - 100%, and the interpretational performance rate ranged from 88.2% - 97.0%. The performance on hyperphenylalaninemia (HPA), 3-methylcrotonyl-CoA carboxylase deficiency (MCCD), and ethylmalonic encephalopathy (EE) samples were not satisfactory. CONCLUSIONS: In general, the participants of this pilot EQA scheme are equipped with the basic capability for qualitative organic acid analysis and interpretation of the results. Limited by the small size of laboratories and samples involved, this activity could not fully reflect the state of clinical practice of Chinese laboratories. NCCL will improve the EQA scheme and implement more EQA activities in the future.


Subject(s)
Metabolic Diseases , Phenylketonurias , Humans , Quality Control , Laboratories , Metabolic Diseases/diagnosis , China , Quality Assurance, Health Care
12.
Biochem Biophys Res Commun ; 710: 149889, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581955

ABSTRACT

The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.


Subject(s)
Breast Neoplasms , Metal-Organic Frameworks , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Drug Delivery Systems , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Carriers , Cell Line, Tumor
13.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587867

ABSTRACT

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Subject(s)
Graphite , Lasers , Textiles , Graphite/chemistry , Humans , Electrochemical Techniques/methods , Nanocomposites/chemistry , Electric Conductivity , Polyethylene Terephthalates/chemistry , Animals , Biocompatible Materials/chemistry , Biosensing Techniques/methods
14.
Dev Neurosci ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471480

ABSTRACT

BACKGROUND: Upstream stimulating factor 2 (USF2) belongs to basic-Helix-Loop-Helix-Leucine Zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated. METHODS: Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2), and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 was detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5. RESULTS: The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased level of IL-10, but decreased TNF-α, IL-1ß, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206, while reduced expression of CD16 and CD32 in SNL-induced mice. USF2 bind to promoter of SNHG5, and weakened SNL-induced up-regulation of SNHG5. SNHG5 bind to miR-181b-5p, and miR-181b-5p to interact with CXCL5. CONCLUSION: Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.

15.
Ann Med Surg (Lond) ; 86(3): 1590-1600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463086

ABSTRACT

Background: Playing an exemplary role, frailty have crucial effect on the preoperative evaluation of elderly patients. Previous studies have shown that frailty is associated with complications and mortality in patients with gastric cancer (GC). However, with the development of the concept of "patient-centered", the range of health-related outcomes is broad. The differences in relation between frailty and various adverse outcomes will be further explored. Method: The PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wan Fang, and Chinese Biomedical Literature databases were searched for keywords, including frailty (such as frail) and gastric cancer (such as stomach neoplasms or stomach cancer or gastrectomy or gastric surgery). The search period is until August 2023. The included studies were observational or cohort studies with postoperative related adverse outcomes as primary or secondary outcome measures. Valid assessment tools were used. The Quality Assessment Tool for Observational Cohort and Cross-sectional Studies was used to assess methodological quality in the included literature. Result: Fifteen studies were included, including 4 cross-sectional studies, 8 retrospective cohort studies, and 3 prospective cohort studies. Among them, 6 studies were rated as "Good" and 9 studies were rated as "Fair," indicating that the quality of the literature was high. Then, 10 frailty assessment tools were summarized and classified into two broad categories in accordance with frailty models. Results of the included studies indicated that frailty in elderly patients with GC was associated with postoperative complications, mortality, hospital days, readmissions, quality of life, non-home discharge, and admission to the intensive care unit. Conclusion: This scoping review concludes that high levels of preoperative frailty increase the risk of adverse outcomes in elderly patients with GC. Frailty will be widely used in the future clinical evaluation of elderly gastric cancer patients, precise risk stratification should be implemented for patients, and frailty management should be implemented well to reduce the occurrence of adverse treatment outcomes.

16.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473757

ABSTRACT

Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.


Subject(s)
Cichlids , Streptococcal Infections , Tilapia , Animals , Cichlids/metabolism , Streptococcus agalactiae , Gene Expression Regulation , Amino Acid Sequence , Tilapia/metabolism , Collectins/genetics
17.
Huan Jing Ke Xue ; 45(2): 837-843, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471922

ABSTRACT

The Yellow River water of an urban area located in the middle and lower reaches of the Yellow River was taken as the research object, in which the seasonal and along-range distribution of total culturable bacteria, typical antibiotic resistant bacteria (amoxicillin resistant bacteria and sulfamethoxazole-resistant bacteria), and their corresponding typical resistance genes ï¼»ß-lactam resistance gene (blaCTX-M) and sulfamamide resistance genes (sulI and sulⅡ), as well as intⅠ1 were investigated. The results showed that the total culturable bacteria, ß-lactam-resistant bacteria and sulfonamide-resistant bacteria in the Yellow River Basin were significantly affected by temperature and human activities. The composition and quantity of their genera had obvious spatiotemporal distribution characteristics, in which Bacillus and Pseudomonas were dominant in the composition and number of bacteria. The abundance of resistance genes decreased with the decrease in temperature. The proportion of ß-lactam resistance genes in the total genes was higher than that of sulfanilamide genes, and sulI was the dominant gene in sulfanilamide genes. Correlation analysis showed that class Ⅰ integron played an important role in accelerating the spread of resistance genes. This study offers insight into the status quo of water resistance pollution in the Yellow River and provides theoretical support for the risk assessment of resistance genes in the middle and lower reaches of the Yellow River Basin.


Subject(s)
Rivers , Water , Humans , Rivers/microbiology , Anti-Bacterial Agents/analysis , Bacteria/genetics , Sulfamethoxazole , China
18.
New Phytol ; 242(3): 1098-1112, 2024 May.
Article in English | MEDLINE | ID: mdl-38515249

ABSTRACT

The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Lipids , Seeds/genetics , Transcription Factors/metabolism
19.
BMC Gastroenterol ; 24(1): 111, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491346

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as a new term for diagnosing fatty liver disease, which is considered to be a multi-systemic disease with multiple extrahepatic manifestations, including sarcopenia. The link between sarcopenia and MAFLD remains uncertain, especially among young and middle-aged adults. Thus, we examined the relationship between MAFLD and sarcopenia in young and middle-aged individuals in this study. METHODS: A total of 2214 individuals with laboratory tests, dual-energy X-ray absorptiometry and ultrasound transient elastography from NHANES 2017-2018 were selected for this study. MAFLD was diagnosed as fatty liver disease with any one of the situations: overweight/obesity, diabetes mellitus, presence of metabolic dysregulation. Sarcopenia was defined by appendicular lean mass adjusted for body mass index (BMI). Multivariable logistic regression and restricted cubic spline (RCS) model were applied to explore the relationship between MAFLD and sarcopenia, and the mediation analyses were also conducted. Moreover, subgroup analyses stratified by BMI and lifestyles were done. RESULTS: The prevalence of MAFLD was 47.85%, and nearly 8.05% of participants had sarcopenia. The prevalence of sarcopenia was higher in participants with MAFLD (12.75%; 95% CI 10.18-15.31%) than in the non-MAFLD (3.73%; 95% CI 2.16-5.31%). MAFLD was significantly positively associated with sarcopenia after adjustments [OR = 2.87 (95% CI: 1.62-5.09)]. Moreover, significant positive associations were observed between liver fibrosis and sarcopenia prevalence in MAFLD patients (OR = 2.16; 95% CI 1.13-4.15). The RCS curve revealed that MAFLD was linearly associated with sarcopenia. The relationship between the MAFLD and sarcopenia were mediated by C-reactive protein (mediation proportion: 15.9%) and high-density lipoprotein cholesterol (mediation proportion: 18.9%). Subgroup analyses confirmed the association between MAFLD and sarcopenia differed in different lifestyle groups. CONCLUSIONS: Both MAFLD prevalence and severity was significantly associated with sarcopenia. Thus, clinicians should advise comorbidity screening and lifestyle changes to young and middle-aged patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sarcopenia , Adult , Middle Aged , Humans , Nutrition Surveys , Sarcopenia/complications , Sarcopenia/epidemiology , Body Mass Index , C-Reactive Protein , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology
20.
Mol Immunol ; 168: 75-88, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430689

ABSTRACT

To explore the molecular biological characteristics of lung cancer associated with cystic airspaces (LCCA) and its potential roles on prognosis. A total of 165 LCCAs and 201 non-LCCAs were enrolled in this study. Bulk RNA sequencing was implemented in eight LCCAs and nine non-LCCAs to explore the differentially expressed genes. TCGA data were used to analyze LCCA-specific genes that associated with overall survival (OS). The median age was 60 (IQR 53 to 65) years in LCCA cohort. We found LCCA were predominant in men and had less visceral pleura invasion (VPI) or lympho-vascular invasion (LVI). Moreover, LCCA presented with higher histological heterogeneity. Kaplan-Meier analysis showed that patients of age more than 60 and positive VPI had significantly less PFS in LCCA. Cox regression suggested that LCCA, micropapillary subtype proportion and VPI were the independent risk factors for PFS. LCCA had up-regulated pathways associated with EMT, angiogenesis and cell migration. In addition, LCCA displayed higher levels of immunosuppressor infiltration (M2 macrophages, CAFs and MDSCs) and distinct cell death and metabolic patterns. BCR/TCR repertoire analysis revealed less BCR richness, clonality and high-abundance shared clonotypes in LCCA. Finally, Cox regression analysis identified that four cystic-specific genes, KCNK3, NRN1, PARVB and TRHDE-AS1, were associated with OS of lung adenocarcinoma (LUAD). And cystic-specific risk scores (CSRSs) were calculated to construct a nomogram, which performance well. Our study for the first time indicated significantly distinct molecular biological and immune characteristics between LCCA and non-LCCA, which provide complementary prognostic values in early-stage non-small cell lung cancer (NSCLC).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neuropeptides , Male , Humans , Middle Aged , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Pleura/pathology , Risk Factors , GPI-Linked Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...