Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(13): 5989-5994, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37350729

ABSTRACT

Moiré heterobilayers host interlayer excitons in a natural, periodic array of trapping potentials. Recent work has elucidated the structure of the trapped interlayer excitons and the nature of photoluminescence (PL) from trapped and itinerant charged complexes such as interlayer trions in these structures. In this paper, our results serve to add to the understanding of the nature of PL emission and explain its characteristic blueshift with increasing carrier density, along with demonstrating a significant difference between the interlayer exciton-trion conversion efficiency as compared to both localized and itinerant intralayer species in conventional monolayers. Our results show the absence of optical generation of trions in these materials, which we suggest arises from the highly localized, near subnanometer confinement of trapped species in these Moiré potentials.

2.
Opt Express ; 31(4): 6453-6463, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823900

ABSTRACT

A metaoptical system is co-designed with electronic hardware to implement deep learning image recognition. The optical convolution block includes a reflective metasurface to perform one layer of a deep neural network. The optical and digital components are jointly optimized to perform an image classification task attaining 65% accuracy, which is close to the 66% accuracy of a fully-digital network where the optical block is replaced by a digital convolution layer.

3.
J Phys Chem Lett ; 12(20): 5030-5038, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34018749

ABSTRACT

We demonstrate the formation of CdSe nanoplatelet (NPL) exciton-polaritons in a distributed Bragg reflector (DBR) cavity. The molecule-cavity hybrid system is in the strong coupling regime with an 83 meV Rabi splitting, characterized from angle-resolved reflectance and photoluminescence measurements. Mixed quantum-classical dynamics simulations are used to investigate the polariton photophysics of the hybrid system by treating the electronic and photonic degrees of freedom (DOF) quantum mechanically and the nuclear phononic DOF classically. Our numerical simulations of the angle-resolved photoluminescence (PL) agree extremely well with the experimental data, providing a fundamental explanation of the asymmetric intensity distribution of the upper and lower polariton branches. Our results also provide mechanistic insights into the importance of phonon-assisted nonadiabatic transitions among polariton states, which are reflected in the various features of the PL spectra. This work proves the feasibility of coupling nanoplatelet electronic states with the photon states of a dielectric cavity to form a hybrid system and provides a new platform for investigating cavity-mediated physical and chemical processes.

4.
Opt Express ; 27(11): 15194-15204, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163719

ABSTRACT

A compact, flat lens with dynamically tunable focal length will be an essential component in advanced reconfigurable optical systems. One approach to realize a flat tunable lens is by utilizing metasurfaces, which are two-dimensional nanostructures capable of tailoring the wavefront of incident light. When a metasurface with a hyperboloidal phase profile, i.e., a metalens, is fabricated on a substrate that can be actuated, its focal length can be adjusted dynamically. Here, we design and realize the first reflection type, tunable metalens (i.e., metamirror) operating in the visible regime (670 nm). It is shown that the focal length can be continuously adjusted by up to 45% with a 0% to 20% lateral stretching of the substrate, while maintaining diffraction-limited focusing and high focusing efficiency. Our design as a flat optics element has potential in widespread applications, such as wearable mixed reality systems, biomedical instruments and integrated optics devices.

5.
Opt Express ; 26(23): 30678-30688, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469961

ABSTRACT

Gradient metasurfaces provide a novel approach to the phase manipulation of incident electromagnetic waves. Thus, they have the potential to create compact, light-weight optical solutions. An attractive feature of metasurfaces is the ability to integrate multiple optical functionalities into a single surface design. Here we demonstrate a high-efficiency (up to ~60%), reflective meta-hologram for visible light by using an ultra-thin (~λ/4 thick) gap surface plasmon-based metasurface. By precisely sampling the predesigned image phase and amplitude to the unit cells of our device, polarization-controlled dual images are reconstructed with a high polarization extinction ratio and high fidelity. The proposed technique expands the range of possibilities for high-quality hologram generation by using ultra-thin nanophotonic devices and paves the way for variousholography-related applications across the visible band.

6.
Nano Lett ; 18(5): 2859-2863, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29589758

ABSTRACT

Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...