Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 363: 142836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004146

ABSTRACT

The main challenge in removing nutrients from municipal wastewater in China is the lack of available carbon sources. While hydrolysis acidification tanks can improve wastewater biodegradability by effectively utilizing internal carbon sources, high sludge concentrations are difficult to control in traditional tank variants. In this study, an innovative anaerobic filter (AnF) hydrolysis acidification reactor composed of a continuously stirred tank reactor (CSTR) and cloth media filter was designed to regulate and maintain high sludge concentrations in the hydrolysis acidifier. The reactor was used as a pretreatment unit for the anaerobic/anoxic/oxic (AAO) units and combined into an AnF-AAO system to explore the effectiveness of internal carbon source utilization in wastewater. The results indicate that as the sludge concentration in the hydrolysis acidifier increased, the hydrolysis and acidification processes became more efficient. The optimal sludge concentration was 40 g/L, which significantly increased the production of soluble chemical oxygen demand and volatile fatty acids. Above this concentration, the efficiency decreased. Compared to traditional AAO processes, the AnF-AAO system achieved superior total nitrogen and phosphorus removal with shorter hydraulic retention times and reduced sludge production by a significant amount of 35%. Due to its capacity for enhancing internal carbon source utilization, the AnF-AAO system constitutes a promising approach for sustainable urban wastewater treatment.


Subject(s)
Bioreactors , Carbon , Nitrogen , Phosphorus , Sewage , Waste Disposal, Fluid , Wastewater , Carbon/metabolism , Wastewater/chemistry , Waste Disposal, Fluid/methods , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Anaerobiosis , Sewage/chemistry , Biological Oxygen Demand Analysis , China , Biodegradation, Environmental , Hydrolysis , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis
2.
Luminescence ; 39(1): e4585, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37635303

ABSTRACT

In past decades, organic crystals have presented considerable potential in the field of optoelectronics due to their rich tunable physical and chemical properties and excellent optoelectronic characteristics. White-light emission, as a special application, has received widespread attention and has been applied in various fields, generating significant interest in the scientific community. By preparing white light-emitting organic crystals, a series of applications for future white-light sources can be realized. This article reviews the research progress on the molecular design and synthesis, preparation, and application of white light-emitting organic crystals in recent years. We hope that this review will help to understand and facilitate the development of white light-emitting organic crystals.


Subject(s)
Light
3.
Bioresour Technol ; 288: 121592, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31176940

ABSTRACT

This study investigated sulfamethoxazole (SMX) removal and fate in sulfate-reducing up-flow sludge bed (SRUSB) reactors inoculated with sulfate-reducing bacteria (SRB) granules and flocs. The resilience of SRB granules and flocs against varying pHs and hydraulic retention times (HRTs) was also examined. SRB granules and flocs efficiently removed SMX from wastewater, which was significantly higher than the aerobic sludge. SRB granules achieved significantly (p < 0.05) higher SMX removal (∼13.3 µg/g suspended solids (SS)-d) than the SRB flocs (∼11.2 µg/g SS-d) during 150-day of SRUSB reactors operation. The SMX removal by both granules and flocs was mainly attributed to biodegradation. Sorption also contributed to SMX removal, in which aromatic protein-like substances of extracellular polymeric substances played important role in SMX removal. In addition, SRB granules showed higher resilience than SRB flocs against varying pHs and HRTs. Thus, SRB-mediated biological process, especially SRB granules, could be a promising biotechnology to remove SMX from wastewaters.


Subject(s)
Sewage , Sulfamethoxazole , Bioreactors , Sulfates , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...