Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 11(21): 7077-7089, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37655798

ABSTRACT

Tissue engineering techniques bring the promise of vaginal reconstruction with low invasiveness and fewer complications. However, existing biomaterial scaffolds remain limited in efficient vaginal recovery, focusing only on regenerating an epithelial layer, but muscle layers are missing or abnormal. The lack of a multi-tissue hierarchical structure in the reconstructed vagina leads to shrinking, stenosis, and fibrosis. Here, an acellular matrix named a double-sided biomembrane (DBM) is demonstrated for vaginal recovery. The regeneration of epithelial and muscle layers is achieved simultaneously since the smooth side of the DBM is helpful for guiding epithelial cell growth, while its loose and porous side guides muscle cell growth. In addition, the DBM demonstrates excellent mechanical properties similar to vaginal tissue, and hydrophilicity. Therefore, neovaginas were observed in the fourth and twelfth weeks after DBMs were transplanted to repair full-thickness vaginal defects (4 cm) that we established in large animals. The DBMs can effectively promote rapid epithelialization, the formation of large muscle bundles, higher rates of angiogenesis, and the restoration of physiological function in a neovagina. That is, the injured vagina achieves nearly complete recovery in anatomy and function, similar to a normal vagina. These preclinical results indicate that the DBM has prospects for vaginal injury repair.

2.
Biomater Sci ; 11(2): 678-689, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36511438

ABSTRACT

Spinal cord injury (SCI) repair remains a major challenge in clinics. Though neural stem cells (NSCs) have shown great potentials in SCI treatment, their applications were hampered since they primarily differentiate into astrocytes rather than neurons in the injured area, indicating a high demand for effective strategies to direct neuronal differentiation. Baicalein is a clinical drug with multiple pharmacological activities, while its effects on NSCs have rarely been reported. In the current work, inspired by a similarity of the metabolic reprogramming required in neuronal differentiation and that involved in chemoresistance reversal of cancer cells induced by baicalein, we studied the role of baicalein in NSC differentiation and discovered its promotion effects on neuronal differentiation. Based on this observation, baicalein-functionalized collagen scaffolds (BFCSs) were developed and applied for SCI treatment. The BFCSs released the payload in a sustained way and possessed comparable physical properties to the commonly used collagen. Both in vitro studies with primary NSCs and in vivo studies in SCI rats showed that the BFCSs containing a low amount of baicalein can facilitate not only neurogenesis and axon extension, but also reduce astrocyte production and glial scar formation. More importantly, the BFCS implantation led to improvement in the motor functional recovery of SCI rats. Thus, the BFCSs provided a potential strategy to induce neuronal differentiation towards facilitating SCI repair, as well as for the treatment of other central nervous system injuries.


Subject(s)
Spinal Cord Injuries , Tissue Scaffolds , Animals , Rats , Cell Differentiation , Collagen/pharmacology , Spinal Cord , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Neural Stem Cells/physiology
3.
Biomaterials ; 291: 121884, 2022 12.
Article in English | MEDLINE | ID: mdl-36356471

ABSTRACT

Lung regeneration after acute injury usually depends on stem cell migration and differentiation, and functional alveoli-like tissue and capillary structure formation. The homing of mesenchymal stem cells (MSCs) to injury sites promotes lung repair through damaged cell replacement and anti-inflammatory and anti-fibrotic effects. Here, we aimed to improve therapeutic effects of the endogenous MSCs by increasing their homing efficiency. We have identified a high-affinity leptin receptor (LEPR)-binding peptide using a phage display screening technique, as the LEPR is highly expressed in MSCs. The selected LEPR-binding peptides were modified with a collagen binding peptide for specifically tethering to a collagen scaffold. After implantation of the LEPR-binding peptide functionalized collagen scaffold in a rat model of acute lung injury, the endogenous LEPR+ MSCs were specifically recruited out of circulation to the scaffold, and their retention periods in the damaged area were significantly prolonged. The migrated MSCs in the functional scaffold promoted the differentiation of type Ⅱ alveolar epithelial cells to type Ⅰ alveolar epithelial cells and facilitated alveoli-like tissue and capillary formation, thus improved lung function recovery. These results suggest that tethering the LEPR binding peptides to the collagen scaffold significantly enhanced endogenous MSC recruitment and promoted functional regeneration of injured lung tissue.


Subject(s)
Acute Lung Injury , Receptors, Leptin , Rats , Animals , Collagen , Lung , Acute Lung Injury/therapy , Peptides
4.
Biomed Phys Eng Express ; 6(2): 025005, 2020 02 17.
Article in English | MEDLINE | ID: mdl-33438631

ABSTRACT

Human adipose derived stem cells (hASCs) were seeded onto polymer microarrays that had been fabricated using a variety of acrylate monomers to discover novel substrates that induced differentiation towards chondrocytes and osteoblasts. Flow cytometric analysis showed that both CD105 and CD49d positive hASCs increased rapidly with passage number on the lead polymers, while quantitative PCR analysis showed that the substrate synthesized from methacryloxyethyltrimethyl ammonium chloride, N,N-diethylaminoethyl methacrylate and cyclohexyl methacrylate enhanced chondrogenesis and osteogenensis some 4 and 25 times respectively in terms of the expression of SOX9 and ALP in differentiated stem cells. These copolymers substrates thus have great potential for application in the purification, generation and expansion of defined hASC's and the controlled differentiation of of cells for possible clinical application.


Subject(s)
Cell Differentiation , Chondrocytes/cytology , Chondrogenesis , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis , Polymers/chemistry , Biomarkers/metabolism , Cells, Cultured , Chondrocytes/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism
5.
Biomed Mater ; 14(1): 015003, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30277887

ABSTRACT

BACKGROUND: Acrylate/acrylamide copolymers have excellent optical properties and biocompatibility and are ideal biomaterials that have been widely used in tissue engineering. Multilineage-differentiating stress-enduring cells (Muse cells) are a specific subset of mesenchymal stem cells that have an excellent potential for the regenerative medicine. OBJECTIVE: This study was designed to investigate the effects of acrylate/acrylamide copolymers on the adhesion, proliferation and pluripotent-like properties of Muse cells, which were derived from normal human dermal fibroblasts by long-term trypsin incubation. METHODS: In an initial experiment, Muse cells were seeded on primary microarrays containing micro-spots of 275 different mixtures of acrylate/acrylamide. Each mixture was composed of two of 11 different monomers in various proportions, and was replicated in four micro-spots each. According to the adhesion and growth characteristics of Muse cells on those substrates, specific polymer candidates for Muse cells were selected and secondary microarrays were prepared. We then observed the effects of those specific polymer candidates on the adherence, proliferation and differentiation of Muse cells and suitable candidates for their optimal culture were identified. RESULTS: According to the adhesion and growth patterns of Muse cells on the primary microarrays, ten suitable mixtures of acrylate/acrylamide copolymers were identified. Muse cells grew well on six of those combinations and around the four other combinations of those polymer mixtures. Muse cells cultured on three of those combinations proliferated and differentiated into long spindle-shaped cells that looked like fibroblasts, while Muse cells cultured on one combination formed clusters that were ring-shaped. Muse cells cultured on some of those combinations of acrylate/acrylamide proliferated and formed clusters that appeared to be very healthy, whereas Muse cells cultured on other combinations formed clusters that expanded outwards. CONCLUSIONS: These results identified a polymer combination that was optimum for the adhesion, proliferation and maintenance of Muse cells in an undifferentiated state.


Subject(s)
Acrylamide/chemistry , Acrylates/chemistry , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Lineage , Fibroblasts/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Polymers/chemistry , Regenerative Medicine/methods , Skin/metabolism , Tissue Array Analysis , Tissue Engineering/methods , Trypsin/chemistry
6.
J Mater Chem B ; 6(3): 510-517, 2018 Jan 21.
Article in English | MEDLINE | ID: mdl-32254530

ABSTRACT

Dual-drug loaded pH-responsive hydrogels were prepared as a delivery system carrying, as exemplars, both anti-cancer and anti-bacterial agents for pH controlled drug release. The hydrogels were composed of poly(l-lactide)-co-polyethyleneglycol-co-poly(l-lactide) dimethacrylates (with various molecular weights of l-lactide oligomers) as a macromolecular crosslinker and copolymerized with acrylic acid and N-isopropylacrylamide. The biodegradability, biocompatibility and mechanical properties of the hydrogels were characterized with the hydrogels being nontoxic to cells, while showing a reversible >80% reduction in volume at pH 1.2 compared to pH 7.4. Drug release profiles showed differential release of tetracycline over doxorubicin at pH 1.2, with both drugs being released equally at pH 7.4. Biodegradability was tunable by altering the crosslinking density and pH, with the total degradation of the best gels observed within 2 weeks at pH 7.4.

SELECTION OF CITATIONS
SEARCH DETAIL
...