Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 15(1): 82, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953809

ABSTRACT

BACKGROUND: Purine nucleosides play essential roles in cellular physiological processes and have a wide range of applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleosides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machinery involved in biosynthetic pathways. RESULTS: In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP-EMP), to resolve the competitive relationship between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production to 13.98-14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine intermediates. CONCLUSIONS: Our study reveals that in silico-guided metabolic engineering successfully optimized the purine synthesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis of biotechnological products.

2.
J Struct Biol ; 206(3): 322-334, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30946901

ABSTRACT

3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS) is responsible for the biosynthesis of essential aromatic compounds in microorganisms and plants. It plays a crucial role in the regulation of the carbon flow into the shikimate pathway. Until now, the crystal structures and regulatory mechanisms of dimeric DAHPS enzymes from type Iα subclass have not been reported. Here, we reported dimeric structures of the tyrosine-regulated DAHPS from Escherichia coli, both in its apo form and complex with the inhibitor tyrosine at 2.5 and 2.0 Šresolutions, respectively. DAHPS(Tyr) has a typical (ß/α)8 TIM barrel, which is decorated with an N-terminal extension and an antiparallel ß sheet, ß6a/ß6b. Inhibitor tyrosine binds at a cavity formed by residues of helices α3, α4, strands ß6a, ß6b and the adjacent loops, and directly interacts with residues P148, Q152, S181, I213 and N8*. Although the small angle X-ray scattering profiles from DAHPS(Tyr) with and without tyrosine shows that tyrosine binding leaves most of DAHPS(Tyr) structures unaffected. The comparison of the liganded and unliganded crystal structures reveals that conformational changes of residues P148, Q152 and I213 initiate a transmission pathway to propagate the allosteric signal from the tyrosine-binding site to the active site, which is different from DAHPS(Phe), a phenylalanine-regulated isozyme from E. coli. In addition, mutations of five tyrosine-binding residues P148, Q152, S181, I213 and N8* leads to tyrosine-resistant DAHPS(Tyr) enzymes. These findings provide a new insight into the regulatory mechanism of DAHPS enzymes and a basis for further engineering studies.


Subject(s)
3-Deoxy-7-Phosphoheptulonate Synthase/chemistry , 3-Deoxy-7-Phosphoheptulonate Synthase/ultrastructure , Escherichia coli/ultrastructure , Protein Conformation , 3-Deoxy-7-Phosphoheptulonate Synthase/genetics , Allosteric Regulation/genetics , Binding Sites/genetics , Carbon/metabolism , Catalytic Domain/genetics , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/genetics , Metabolic Networks and Pathways/genetics , Protein Binding , Protein Structure, Secondary/genetics , Shikimic Acid/metabolism
3.
Biotechnol Biofuels ; 11: 277, 2018.
Article in English | MEDLINE | ID: mdl-30337956

ABSTRACT

BACKGROUND: The thermotolerant methylotrophic yeast Ogataea polymorpha has been regarded as an important organism for basic research and biotechnological applications. It is generally recognized as an efficient and safe cell factory in fermentative productions of chemicals, biofuels and other bio-products. However, it is difficult to genetically engineer for the deficiency of an efficient and versatile genome editing technology. RESULTS: In this study, we developed a CRISPR-Cas9-assisted multiplex genome editing (CMGE) approach including multiplex genes knock-outs, multi-locus (ML) and multi-copy (MC) integration methods in yeasts. Based on CMGE, various genome modifications, including gene deletion, integration, and precise point mutation, were performed in O. polymorpha. Using the CMGE-ML integration method, three genes TAL from Herpetosiphon aurantiacus, 4CL from Arabidopsis thaliana and STS from Vitis vinifera of resveratrol biosynthetic pathway were simultaneously integrated at three different loci, firstly achieving the biosynthesis of resveratrol in O. polymorpha. Using the CMGE-MC method, ∼ 10 copies of the fusion expression cassette P ScTEF1 -TAL-P ScTPI1 -4CL-P ScTEF2 -STS were integrated into the genome. Resveratrol production was increased ~ 20 fold compared to the one copy integrant and reached 97.23 ± 4.84 mg/L. Moreover, the biosynthesis of human serum albumin and cadaverine were achieved in O. polymorpha using CMGE-MC to integrate genes HSA and cadA, respectively. In addition, the CMGE-MC method was successfully developed in Saccharomyces cerevisiae. CONCLUSIONS: An efficient and versatile multiplex genome editing method was developed in yeasts. The method would provide an efficient toolkit for genetic engineering and synthetic biology researches of O. polymorpha and other yeast species.

4.
ACS Synth Biol ; 7(1): 98-106, 2018 01 19.
Article in English | MEDLINE | ID: mdl-28968490

ABSTRACT

Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.


Subject(s)
Bacillus subtilis/genetics , DNA Restriction-Modification Enzymes/genetics , Escherichia coli/genetics , Gene Editing/methods , Genome, Bacterial , Amino Acid Transport Systems, Basic/deficiency , Amino Acid Transport Systems, Basic/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Restriction Enzymes/genetics , DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type III Site-Specific/genetics , Escherichia coli Proteins , Plasmids/genetics , Plasmids/metabolism , Point Mutation , Ribosomal Protein S9 , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...