Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 11: 767134, 2021.
Article in English | MEDLINE | ID: mdl-35070971

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck. The primary clinical manifestations are nasal congestion, blood-stained nasal discharge, headache, and hearing loss. It occurs frequently in Southeast Asia, North Africa, and especially in southern China. Radiotherapy is the main treatment, and currently, imaging examinations used for the diagnosis, treatment, and prognosis of NPC include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and PET-MRI. These methods play an important role in target delineation, radiotherapy planning design, dose evaluation, and outcome prediction. However, the anatomical and metabolic information obtained at the macro level of images may not meet the increasing accuracy required for radiotherapy. As a technology used for mining deep image information, radiomics can provide further information for the diagnosis and treatment of NPC and promote individualized precision radiotherapy in the future. This paper reviews the application of radiomics in the diagnosis and treatment of nasopharyngeal carcinoma.

2.
Chin Med J (Engl) ; 133(22): 2653-2659, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33009025

ABSTRACT

BACKGROUND: Liver fibrosis (LF) continues to develop and eventually progresses to cirrhosis. However, LF and early-stage cirrhosis (ESC) can be reversed in some cases, while advanced cirrhosis is almost impossible to cure. Advances in quantitative imaging techniques have made it possible to replace the gold standard biopsy method with non-invasive imaging, such as radiomics. Therefore, the purpose of this study is to develop a radiomics model to identify LF and ESC. METHODS: Patients with LF (n = 108) and ESC (n = 116) were enrolled in this study. As a control, patients with healthy livers were involved in the study (n = 145). Diffusion-weighted imaging (DWI) data sets with three b-values (0, 400, and 800 s/mm) of enrolled cases were collected in this study. Then, radiomics features were extracted from manually delineated volumes of interest. Two modeling strategies were performed after univariate analysis and feature selection. Finally, an optimal model was determined by the receiver operating characteristic area under the curve (AUC). RESULTS: The optimal models were built in plan 1. For model 1 in plan 1, the AUCs of the training and validation cohorts were 0.973 (95% confidence interval [CI] 0.946-1.000) and 0.948 (95% CI 0.903-0.993), respectively. For model 2 in plan 1, the AUCs of the training and validation cohorts were 0.944, 95% CI 0.905 to 0.983, and 0.968, 95% CI 0.940 to 0.996, respectively. CONCLUSIONS: Radiomics analysis of DWI images allows for accurate identification of LF and ESC, and the non-invasive biomarkers extracted from the functional DWI images can serve as a better alternative to biopsy.


Subject(s)
Liver Cirrhosis , Machine Learning , Diffusion Magnetic Resonance Imaging , Humans , Liver Cirrhosis/diagnostic imaging , ROC Curve , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...