Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 887967, 2022.
Article in English | MEDLINE | ID: mdl-35586864

ABSTRACT

Bacteria can withstand various types of environmental osmostress. A sudden rise in osmostress affects bacterial cell growth that is countered by activating special genes. The change of osmostress is generally a slow process under the natural environment. However, the collective response of bacteria to low osmostress remains unknown. This study revealed that the deletion of phoP (ΔphoP) from X. citri significantly compromised the growth and virulence as compared to the wild-type strain. Interestingly, low osmostress reversed physiological deficiencies of X. citri phoP mutant related to bacterial growth and virulence. The results also provided biochemical and genetic evidence that the physiological deficiency of phoP mutant can be reversed by low osmostress induced ß-glucosidase (BglS) expression. Based on the data, this study proposes a novel regulatory mechanism of a novel ß-glucosidase activation in X. citri through low osmostress to reverse the fitness deficiency.

2.
Environ Microbiol ; 21(3): 959-971, 2019 03.
Article in English | MEDLINE | ID: mdl-30537399

ABSTRACT

The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. The formation and growth of dikaryotic hypha after sexual mating is critical for S. scitamineum pathogenicity, however regulation of S. scitimineum mating has not been studied in detail. We identified and characterized the core components of the conserved cAMP/PKA pathway in S. scitamineum by reverse genetics. Our results showed that cAMP/PKA signalling pathway is essential for proper mating and filamentation, and thus critical for S. scitamineum virulence. We further demonstrated that an elevated intracellular ROS (reactive oxygen species) level promotes S. scitamineum mating-filamentation, via transcriptional regulation of ROS catabolic enzymes, and is under regulation of the cAMP/PKA signalling pathway. Furthermore, we found that fungal cAMP/PKA signalling pathway is also involved in regulation of host ROS response. Overall, our work displayed a positive role of elevated intracellular ROS in fungal differentiation and virulence.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Plant Diseases/microbiology , Saccharum/microbiology , Ustilaginales/physiology , Homeostasis , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction , Ustilaginales/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...