Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672017

ABSTRACT

EEG signals combined with deep learning play an important role in the study of human-computer interaction. However, the limited dataset makes it challenging to study EEG signals using deep learning methods. Inspired by the GAN network in image generation, this paper presents an improved generative adversarial network model L-C-WGAN-GP to generate artificial EEG data to augment training sets and improve the application of BCI in various fields. The generator consists of a long short-term memory (LSTM) network and the discriminator consists of a convolutional neural network (CNN) which uses the gradient penalty-based Wasserstein distance as the loss function in model training. The model can learn the statistical features of EEG signals and generate EEG data that approximate real samples. In addition, the performance of the compressed sensing reconstruction model can be improved by using augmented datasets. Experiments show that, compared with the existing advanced data amplification techniques, the proposed model produces EEG signals closer to the real EEG signals as measured by RMSE, FD and WTD indicators. In addition, in the compressed reconstruction of EEG signals, adding the new data reduces the loss by about 15% compared with the original data, which greatly improves the reconstruction accuracy of the EEG signals' compressed sensing.

2.
Brain Sci ; 14(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672024

ABSTRACT

Motor imagery electroencephalography (EEG) signals have garnered attention in brain-computer interface (BCI) research due to their potential in promoting motor rehabilitation and control. However, the limited availability of labeled data poses challenges for training robust classifiers. In this study, we propose a novel data augmentation method utilizing an improved Deep Convolutional Generative Adversarial Network with Gradient Penalty (DCGAN-GP) to address this issue. We transformed raw EEG signals into two-dimensional time-frequency maps and employed a DCGAN-GP network to generate synthetic time-frequency representations resembling real data. Validation experiments were conducted on the BCI IV 2b dataset, comparing the performance of classifiers trained with augmented and unaugmented data. Results demonstrated that classifiers trained with synthetic data exhibit enhanced robustness across multiple subjects and achieve higher classification accuracy. Our findings highlight the effectiveness of utilizing a DCGAN-GP-generated synthetic EEG data to improve classifier performance in distinguishing different motor imagery tasks. Thus, the proposed data augmentation method based on a DCGAN-GP offers a promising avenue for enhancing BCI system performance, overcoming data scarcity challenges, and bolstering classifier robustness, thereby providing substantial support for the broader adoption of BCI technology in real-world applications.

3.
Sci Rep ; 14(1): 5087, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429300

ABSTRACT

When traditional EEG signals are collected based on the Nyquist theorem, long-time recordings of EEG signals will produce a large amount of data. At the same time, limited bandwidth, end-to-end delay, and memory space will bring great pressure on the effective transmission of data. The birth of compressed sensing alleviates this transmission pressure. However, using an iterative compressed sensing reconstruction algorithm for EEG signal reconstruction faces complex calculation problems and slow data processing speed, limiting the application of compressed sensing in EEG signal rapid monitoring systems. As such, this paper presents a non-iterative and fast algorithm for reconstructing EEG signals using compressed sensing and deep learning techniques. This algorithm uses the improved residual network model, extracts the feature information of the EEG signal by one-dimensional dilated convolution, directly learns the nonlinear mapping relationship between the measured value and the original signal, and can quickly and accurately reconstruct the EEG signal. The method proposed in this paper has been verified by simulation on the open BCI contest dataset. Overall, it is proved that the proposed method has higher reconstruction accuracy and faster reconstruction speed than the traditional CS reconstruction algorithm and the existing deep learning reconstruction algorithm. In addition, it can realize the rapid reconstruction of EEG signals.


Subject(s)
Data Compression , Deep Learning , Signal Processing, Computer-Assisted , Data Compression/methods , Algorithms , Electroencephalography/methods
4.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688024

ABSTRACT

Sensor nodes are widely distributed in the Internet of Things and communicate with each other to form a wireless sensor network (WSN), which plays a vital role in people's productivity and life. However, the energy of WSN nodes is limited, so this paper proposes a two-layer WSN system based on edge computing to solve the problems of high energy consumption and short life cycle of WSN data transmission and establishes wireless energy consumption and distance optimization models for sensor networks. Specifically, we propose the optimization objective of balancing load and distance factors. We adopt an improved sparrow search algorithm to evenly distribute sensor nodes in the system to reduce resource consumption, consumption, and network life. Through the simulation experiment, our method is illustrated, effectively reducing the network's energy consumption by 26.8% and prolonging the network's life cycle.

5.
Brain Sci ; 13(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37759894

ABSTRACT

Electroencephalogram (EEG) signals exhibit low amplitude, complex background noise, randomness, and significant inter-individual differences, which pose challenges in extracting sufficient features and can lead to information loss during the mapping process from low-dimensional feature matrices to high-dimensional ones in emotion recognition algorithms. In this paper, we propose a Multi-scale Deformable Convolutional Interacting Attention Network based on Residual Network (MDCNAResnet) for EEG-based emotion recognition. Firstly, we extract differential entropy features from different channels of EEG signals and construct a three-dimensional feature matrix based on the relative positions of electrode channels. Secondly, we utilize deformable convolution (DCN) to extract high-level abstract features by replacing standard convolution with deformable convolution, enhancing the modeling capability of the convolutional neural network for irregular targets. Then, we develop the Bottom-Up Feature Pyramid Network (BU-FPN) to extract multi-scale data features, enabling complementary information from different levels in the neural network, while optimizing the feature extraction process using Efficient Channel Attention (ECANet). Finally, we combine the MDCNAResnet with a Bidirectional Gated Recurrent Unit (BiGRU) to further capture the contextual semantic information of EEG signals. Experimental results on the DEAP dataset demonstrate the effectiveness of our approach, achieving accuracies of 98.63% and 98.89% for Valence and Arousal dimensions, respectively.

6.
Entropy (Basel) ; 25(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37238567

ABSTRACT

Currently, research on the evolution of heterogeneous combat networks (HCNs) mainly focuses on the modeling process, with little attention paid to the impact of changes in network topology on operational capabilities. Link prediction can provide a fair and unified comparison standard for network evolution mechanisms. This paper uses link prediction methods to study the evolution of HCNs. Firstly, according to the characteristics of HCNs, a link prediction index based on frequent subgraphs (LPFS) is proposed. LPFS have been demonstrated on a real combat network to be superior to 26 baseline methods. The main driving force of research on evolution is to improve the operational capabilities of combat networks. Adding the same number of nodes and edges, 100 iterative experiments demonstrate that the evolutionary method (HCNE) proposed in this paper outperforms random evolution and preferential evolution in improving the operational capabilities of combat networks. Furthermore, the new network generated after evolution is more consistent with the characteristics of a real network.

7.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502247

ABSTRACT

With the rapid increase of smart Internet of Things (IoT) devices, edge networks generate a large number of computing tasks, which require edge-computing resource devices to complete the calculations. However, unreasonable edge-computing resource allocation suffers from high-power consumption and resource waste. Therefore, when user tasks are offloaded to the edge-computing system, reasonable resource allocation is an important issue. Thus, this paper proposes a digital-twin-(DT)-assisted edge-computing resource-allocation model and establishes a joint-optimization function of power consumption, delay, and unbalanced resource-allocation rate. Then, we develop a solution based on the improved whale optimization scheme. Specifically, we propose an improved whale optimization algorithm and design a greedy initialization strategy to improve the convergence speed for the DT-assisted edge-computing resource-allocation problem. Additionally, we redesign the whale search strategy to improve the allocation results. Several simulation experiments demonstrate that the improved whale optimization algorithm reduces the resource allocation and allocation objective function value, the power consumption, and the average resource allocation imbalance rate by 12.6%, 15.2%, and 15.6%, respectively. Overall, the power consumption with the assistance of the DT is reduced to 89.6% of the power required without DT assistance, thus, improving the efficiency of the edge-computing resource allocation.


Subject(s)
Resource Allocation , Whales , Animals , Algorithms , Computer Simulation , Internet
8.
Sensors (Basel) ; 22(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35891110

ABSTRACT

In view of the large amount of data collected by an edge server, when compression technology is used for data compression, data classification accuracy is reduced and data loss is large. This paper proposes a data compression algorithm based on the chaotic mutation adaptive sparrow search algorithm (CMASSA). Constructing a new fitness function, CMASSA optimizes the hyperparameters of the Convolutional Auto-Encoder Network (CAEN) on the cloud service center, aiming to obtain the optimal CAEN model. The model is sent to the edge server to compress the data at the lower level of edge computing. The effectiveness of CMASSA performance is tested on ten high-dimensional benchmark functions, and the results show that CMASSA outperforms other comparison algorithms. Subsequently, experiments are compared with other literature on the Multi-class Weather Dataset (MWD). Experiments show that under the premise of ensuring a certain compression ratio, the proposed algorithm not only has better accuracy in classification tasks than other algorithms but also maintains a high degree of data reconstruction.


Subject(s)
Data Compression , Algorithms , Cloud Computing , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...