Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731727

ABSTRACT

Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → 4)-ß-Manp and (1 → 4)-ß-Glcp residues, and the acetyl group was linked to the C-2 of Manp. The possible repeating structural units of DNP1 were [→4)-2-OAc-ß-Manp-(1→]3 →4)-ß-Glcp-(1→. Surface plasmon resonance (SPR) binding test results showed that DNP1 did not bind directly to TLR4. The TLR4 and MD2 receptor blocking tests confirmed that DNP1 needs MD2 and TLR4 to participate in its anti-inflammatory effect. The binding energy of DNP1 to TLR4-MD2 was -7.9 kcal/mol, indicating that DNP1 could bind to the TLR4-MD2 complex stably. Therefore, it is concluded that DNP1 may play an immunomodulatory role by binding to the TLR4-MD2 complex and inhibiting the TLR4-MD2-mediated signaling pathway.

2.
Int J Biol Macromol ; 268(Pt 2): 131910, 2024 May.
Article in English | MEDLINE | ID: mdl-38679267

ABSTRACT

In this study, polysaccharides (RRTPs) were extracted from Rosa roxburghii Tratt pomace by hot water or ultrasound (US)-assisted extraction. The structural properties and potential prebiotic functions of RRTPs were investigated. Structural characterization was conducted through HPAEC, HPGPC, GC-MS, FT-IR and SEM. Chemical composition analysis revealed that RRTPs extracted by hot water (RRTP-HW) or US with shorter (RRTP-US-S) or longer duration (RRTP-US-L) all consisted of galacturonic acid, galactose, glucose, arabinose, rhamnose and glucuronic acid in various molar ratio. US extraction caused notable reduction in molecular weight of RRTPs but no significant changes in primary structures. Fecal fermentation showed RRTPs could reshape microbial composition toward a healthier balance, leading to a higher production of beneficial metabolites including total short-chain fatty acids, curcumin, noopept, spermidine, 3-feruloylquinic acid and citrulline. More beneficial shifts in bacterial population were observed in RRTP-HW group, while RRTP-US-S had stronger ability to stimulate bacterial short-chain fatty acids production. Additionally, metabolic profiles with the intervention of RRTP-HW, RRTP-US-S or RRTP-US-L were significantly different from each other. The results suggested RRTPs had potential prebiotic effects which could be modified by power US via molecular weight degradation.


Subject(s)
Polysaccharides , Prebiotics , Rosa , Rosa/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Molecular Weight , Ultrasonic Waves , Fermentation , Chemical Fractionation/methods
3.
BMC Pulm Med ; 24(1): 163, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570751

ABSTRACT

BACKGROUND: Observational studies have shown that smoking is related to the diffusing capacity of the lungs for carbon monoxide (DLCO) in individuals with idiopathic pulmonary fibrosis (IPF). Nevertheless, further investigation is needed to determine the causal effect between these two variables. Therefore, we conducted a study to investigate the causal relationship between smoking and DLCO in IPF patients using two-sample Mendelian randomization (MR) analysis. METHODS: Large-scale genome-wide association study (GWAS) datasets from individuals of European descent were analysed. These datasets included published lifetime smoking index (LSI) data for 462,690 participants and DLCO data for 975 IPF patients. The inverse-variance weighting (IVW) method was the main method used in our analysis. Sensitivity analyses were performed by MR‒Egger regression, Cochran's Q test, the leave-one-out test and the MR-PRESSO global test. RESULTS: A genetically predicted increase in LSI was associated with a decrease in DLCO in IPF patients [ORIVW = 0.54; 95% CI 0.32-0.93; P = 0.02]. CONCLUSIONS: Our study suggested that smoking is associated with a decrease in DLCO. Patients diagnosed with IPF should adopt an active and healthy lifestyle, especially by quitting smoking, which may be effective at slowing the progression of IPF.


Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking , Idiopathic Pulmonary Fibrosis/genetics , Carbon Monoxide
4.
Front Microbiol ; 15: 1356903, 2024.
Article in English | MEDLINE | ID: mdl-38550873

ABSTRACT

Introduction: Spent mushroom substrate (SMS) is a solid waste in agricultural production that contains abundant lignocellulosic fibers. The indiscriminate disposal of SMS will lead to significant resource waste and pollution of the surrounding environment.The isolation and screening of microorganisms with high cellulase degradation capacity is the key to improving SMS utilization. Methods: The cellulose-degrading microbial consortiums were constructed through antagonism and enzyme activity test. The effect of microbial consortiums on lignocellulose degradation was systematically evaluated by SMS liquid fermentation experiments. Results: In this study, four strains of cellulose-degrading bacteria were screened, and F16, F, and F7 were identified as B. amyloliquefaciens, PX1 identified as B. velezensis. At the same time, two groups of cellulose efficient degrading microbial consortiums (PX1 + F7 and F16 + F) were successfully constructed. When SMS was used as the sole carbon source, their carboxymethyl cellulase (CMCase) activities were 225.16 and 156.63 U/mL, respectively, and the filter paper enzyme (FPase) activities were 1.91 and 1.64 U/mL, respectively. PX1 + F7 had the highest degradation rate of hemicellulose and lignin, reaching 52.96% and 52.13%, respectively, and the degradation rate of F16 + F was as high as 56.30%. Field emission scanning electron microscopy (FESEM) analysis showed that the surface microstructure of SMS changed significantly after microbial consortiums treatment, and the change of absorption peak in Fourier transform infrared spectroscopy (FTIR) and the increase of crystallinity in X-ray diffraction (XRD) confirmed that the microbial consortiums had an actual degradation effect on SMS. The results showed that PX1 + F7 and F16 + F could effectively secrete cellulase and degrade cellulose, which had practical significance for the degradation of SMS. Discussion: In this study, the constructed PX1 + F7 and F16 + F strains can effectively secrete cellulase and degrade cellulose, which holds practical significance in the degradation of SMS. The results can provide technical support for treating high-cellulose solid waste and for the comprehensive utilization of biomass resources.

5.
Am J Emerg Med ; 78: 157-162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281376

ABSTRACT

BACKGROUND AND IMPORTANCE: Paroxysmal supraventricular tachycardia (PSVT) is an arrhythmia commonly seen in the emergency department. Both modified Valsalva maneuver (MVM) and intravenous adenosine are the first line treatment, of which the former has e lower success rate while the latter has a higher success rate but some risks and adverse effects. Given both of these reverse rhythms quickly, combining them may achieve a better effect. OBJECTIVE: The objective of this study is to evaluate the success rate and potential risk of combining the use of intravenous adenosine while patients were doing MVM as a treatment for paroxysmal supraventricular tachycardia(pSVT). DESIGN, SETTINGS AND PARTICIPANTS: We recruited patients with pSVT from 2017 to 2022, and randomly assigned them into 3 groups, MVM group, intravenous adenosine group, and combination therapy group, in which MVM was allowed to be performed twice, while intravenous adenosine was given in a titration manner to repeat three times, recorded the success rate and side effects in each group. MAIN RESULTS: The success rate of the MVM group, adenosine group, and combination group are 42.11%, 75.00 and 86.11%, respectively. The success rate of the adenosine group and combination group is significantly higher than the n MVSM group (p < 0.01, p < 0.001), while the success rate of the combination group is higher than the adenosine group, it has no significant difference (p = 0.340). In terms of safety, the longest RR durations (asystole period) are 1.61 s, 1.60s, and 2.27 s, there is a statistical difference among the three groups (p < 0.01) and between the adenosine and combination group (0.018). CONCLUSION: Therefore, we can conclude that combination therapy has a relatively high success rate and good safety profile, but the current study failed to show its superiority to adenosine.


Subject(s)
Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Humans , Adenosine/therapeutic use , Tachycardia, Paroxysmal/drug therapy , Tachycardia, Supraventricular/drug therapy , Tachycardia, Supraventricular/chemically induced , Tachycardia, Ventricular/drug therapy , Valsalva Maneuver
6.
Sci Total Environ ; 912: 169010, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040348

ABSTRACT

Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.


Subject(s)
Bacillaceae , Bacillus , Methylobacterium , Fermentation , Firmicutes
7.
Food Chem ; 438: 137956, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37989022

ABSTRACT

The development of blueberry wine provides an alternative method for maintaining the nutritional value and extending the shelf life of blueberries. However, anthocyanin loss and off-flavor compound generation during fermentation impair blueberry wine color and quality. Hydroxycinnamate decarboxylase from yeast can catalyze the conversion of hydroxycinnamic acids to vinylphenols, which later may condense with anthocyanins to form more stable vinylphenolic pyranoanthocyanins. In this study, 10 non-Saccharomyces yeasts from Daqu that showed hydroxycinnamate decarboxylase activity were screened. Among the 10 strains, Wickerhamomyces anomalus Y5 showed the highest consumption (34.59%) of the total tested phenolic acids and almost no H2S production. Furthermore, Y5 seemed to produce four vinylphenol pyranoanthocyanins (cyanidin-3-O-galactoside/glucoside-4-vinylcatechol, cyanidin-3-O-galactoside/glucoside-4-vinylsyringol, malvidin-4-vinylguaiacol, and malvidin-4-vinylcatechol) during blueberry wine fermentation, which may improve the color stability of blueberry wine. These findings provide new insights for improving the quality of blueberry wine using non-Saccharomyces yeasts.


Subject(s)
Blueberry Plants , Carboxy-Lyases , Wine , Wine/analysis , Anthocyanins/analysis , Yeasts , Glucosides , Galactosides
8.
Food Funct ; 14(20): 9295-9308, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37779461

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), as the commonest chronic liver disease, is accompanied by liver oxidative stress and inflammatory responses. Herein, the extract obtained from Rubus corchorifolius fruits was purified and characterized for its polyphenol composition. The liver protective effect of the purified R. corchorifolius fruit extract (RCE) on mice with high-fat-diet (HFD)-induced NAFLD were investigated, and the potential mechanisms were explored through the integration of transcriptomics and metabolomics. Results showed that the polyphenolic compounds in RCE mainly included (-)-epigallocatechin, procyanidin B2, keracyanin, vanillin, dihydromyricetin, and ellagic acid. In addition, RCE intervention ameliorated liver and mitochondrial damage, which was evidenced by decreased indices of oxidative stress, liver function markers, and lipid profile levels. The liver metabonomics research revealed that RCE intervention affected the metabolic pathways of metabolites, including linoleic acid metabolism, galactose metabolism, alanine, aspartate and glutamate metabolism, retinol metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, riboflavin metabolism, starch and sucrose metabolism, and arachidonic acid metabolism. Additionally, liver transcriptomics research indicated that pathways like fatty acid degradation, circadian rhythm, valine, leucine and isoleucine degradation, primary bile acid biosynthesis, cytokine-cytokine receptor interaction, adipocytokine signaling pathway, glutathione metabolism, lipid and atherosclerosis were significantly enriched. The transcriptomics and metabolomics analysis demonstrated that RCE intervention had significant modulatory effects on the metabolic pathways associated with glycolipid metabolism. Moreover, RT-PCR results verified that RCE intervention regulated liver mRNA levels associated with the inflammatory response. Therefore, our findings suggest that the intake of RCE might be an effective strategy to alleviate liver damage.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rubus , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Fruit/metabolism , Rubus/genetics , Polyphenols/pharmacology , Polyphenols/metabolism , Transcriptome , Liver/metabolism , Metabolomics , Lipid Metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
9.
Food Res Int ; 173(Pt 1): 113249, 2023 11.
Article in English | MEDLINE | ID: mdl-37803561

ABSTRACT

Product quality and stability improvement is important for development of the Baijiu industry. Generally, Baijiu brewing is carried out in a spontaneous fermentation system mediated by microbiota. Thus, complexity and instability are major features. Due to the insufficient understanding of the mechanism for producing Baijiu, the precise control of the fermentation progress has still not been realized, ultimately affecting product quality and stability. The flavor of Baijiu is the most important factor in determining its quality and is formed by microbiota under the driving force of various physicochemical parameters, such as moisture, acidity, and temperature. Therefore, exploring the association among microbiota (core), physicochemical factors (reference) and flavor compounds (target) has become a key point to clarify the formation mechanism for the flavor quality of Baijiu. Daqu fermentation and liquor fermentation are the two major stages of Baijiu brewing. Daqu, distillers' grains, and pit mud, as the most important fermentation substrates of the microbiota respectively, provide a large number of functional microorganisms related to the flavor components. To this end, we reviewed the relevant research progress of microbiota diversity in different fermentation substrates and the interaction mechanisms among microbiota, physicochemical parameters, and flavor components in this paper. Moreover, a research hypothesis of precise control of the Baijiu fermentation process by building fermentation models based on this is proposed. The key point for this idea is the identification of core microbiota closely associated with the formation of key flavor components by multi-omics technology and the acquisition of culturable strains. With this foundation, fermentation models suitable for different brewing environments will be established by constructing synthetic microbiota, designing mathematical models, and determining key fermentation model parameters. The ultimate goal will be to effectively improve the quality and stability of Baijiu products through model regulation.


Subject(s)
Microbiota , Fermentation , Multiomics , Temperature
10.
Foods ; 12(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37372580

ABSTRACT

Rice, supplemented with Dendrobium officinale, was subjected to cofermentation using Saccharomyces cerevisiae FBKL2.8022 (Sc) and Wickerhamomyces anomalus FBKL2.8023 (Wa). The alcohol content was determined with a biosensor, total sugars with the phenol-sulfuric acid method, reducing sugars with the DNS method, total acids and total phenols with the colorimetric method, and metabolites were analyzed using LC-MS/MS combined with multivariate statistics, while metabolic pathways were constructed using metaboAnalyst 5.0. It was found that the quality of rice wine was higher with the addition of D. officinale. A total of 127 major active substances, mainly phenols, flavonoids, terpenoids, alkaloids, and phenylpropanoids, were identified. Among them, 26 substances might have been mainly metabolized by the mixed-yeasts fermentation itself, and 10 substances might have originated either from D. officinale itself or from microbial metabolism on the newly supplemented substrate. In addition, significant differences in metabolite could be attributed to amino acid metabolic pathways, such as phenylalanine metabolism and alanine, aspartate, and glutamate metabolism. The characteristic microbial metabolism of D. officinale produces metabolites, which are α-dihydroartemisinin, alantolactone, neohesperidin dihydrochalcone, and occidentoside. This study showed that mixed-yeasts cofermentation and fermentation with D. officinale both could increase the content of active substances in rice wine and significantly improve the quality of rice wine. The results of this study provide a reference for the mixed fermentation of brewer's yeast and non-yeast yeasts in rice wine brewing.

11.
Microbiol Res ; 273: 127414, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37236065

ABSTRACT

Microbial community in natural or artificial environments playes critical roles in substance cycles, products synthesis and species evolution. Although microbial community structures have been revealed via culture-dependent and culture-independent approaches, the hidden forces driving the microbial community are rarely systematically discussed. As a mode of cell-to-cell communication that modifies microbial interactions, quorum sensing can regulate biofilm formation, public goods secretion, and antimicrobial substances synthesis, directly or indirectly influencing microbial community to adapt to the changing environment. Therefore, the current review focuses on microbial community in the different habitats from the quorum sensing perspective. Firstly, the definition and classification of quorum sensing were simply introduced. Subsequently, the relationships between quorum sensing and microbial interactions were deeply explored. The latest progressives regarding the applications of quorum sensing in wastewater treatment, human health, food fermentation, and synthetic biology were summarized in detail. Finally, the bottlenecks and outlooks of quorum sensing driving microbial community were adequately discussed. To our knowledge, this current review is the first to reveal the driving force of microbial community from the quorum sensing perspective. Hopefully, this review provides a theoretical basis for developing effective and convenient approaches to control the microbial community with quorum sensing approaches.


Subject(s)
Anti-Infective Agents , Microbiota , Humans , Quorum Sensing/physiology , Bacteria/genetics , Microbial Interactions , Anti-Infective Agents/pharmacology , Biofilms
12.
BMC Microbiol ; 23(1): 67, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918762

ABSTRACT

BACKGROUND: The present study aimed to investigate the changes in volatile components and metabolites of Dendrobium officinale (D. officinale) juice fermented with starter cultures containing Saccharomycopsis fibuligera and Lactobacillus paracasei at 28 ℃ for 15 days and post-ripened at 4 ℃ for 30 days using untargeted metabolomics of liquid chromatography-mass spectrometry (LC-MS) and headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) before and after fermentation. RESULTS: The results showed that the alcohol contents in the S. fibuligera group before fermentation and after fermentation were 444.806 ± 10.310 µg/mL and 510.999 ± 38.431 µg/mL, respectively. Furthermore, the alcohol content in the fermentation broth group inoculated with the co-culture of L. paracasei + S. fibuligera was 504.758 ± 77.914 µg/mL, containing a significant amount of 3-Methyl-1-butanol, Linalool, Phenylethyl alcohol, and 2-Methyl-1-propanol. Moreover, the Ethyl L (-)-lactate content was higher in the co-culture of L. paracasei + S. fibuligera group (7.718 ± 6.668 µg/mL) than in the L. paracasei (2.798 ± 0.443 µg/mL) and S. fibuligera monoculture groups (0 µg/mL). The co-culture of L. paracasei + S. fibuligera significantly promoted the metabolic production of ethyl L (-)-lactate in D. officinale juice. The differential metabolites screened after fermentation mainly included alcohols, organic acids, amino acids, nucleic acids, and their derivatives. Twenty-three metabolites, including 11 types of acids, were significantly up-regulated in the ten key metabolic pathways of the co-culture group. Furthermore, the metabolic pathways, such as pentose and glucuronate interconversions, the biosynthesis of alkaloids derived from terpenoid and polyketide, and aminobenzoate degradation were significantly up-regulated in the co-culture group. These three metabolic pathways facilitate the synthesis of bioactive substances, such as terpenoids, polyketides, and phenols, and enrich the flavor composition of D. officinale juice. CONCLUSIONS: These results demonstrate that the co-culture of L. paracasei + S. fibuligera can promote the flavor harmonization of fermented products. Therefore, this study provides a theoretical basis for analyzing the flavor of D. officinale juice and the functional investigation of fermentation metabolites.


Subject(s)
Dendrobium , Lacticaseibacillus paracasei , Saccharomycopsis , Saccharomycopsis/metabolism , Terpenes , Acids/metabolism , Lactates/metabolism , Fermentation
13.
Int J Food Microbiol ; 394: 110166, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36921483

ABSTRACT

Biofilm plays an important role in resisting the adverse environment, improving the taste and texture, and promoting the synthesis of flavor substances. However, to date, the findings on the effect of biofilm and dominating bacteria Bacillus on the ester synthesis in the Baijiu field have been largely lacked. Therefore, the objectives of the present study were to primarily isolate biofilm-producing microbes in the fermented grains, evaluate the stress tolerance capacity, and unveil the effect of biofilm and co-culture with Bacillus on the ester synthesis in the strong flavor Baijiu. Results indicated that after isolation and evaluation of stress-tolerance capacity, bacterial strain BG-5 and yeast strains YM-21 and YL-10 were demonstrated as mediate or strong biofilm-producing microbes and were identified as Bacillus velezensis, Saccharomycopsis fibuligera, and Zygosaccharomyces bailii, respectively. Solid phase microextraction/gas chromatography-mass spectrometer indicated that biofilm could enhance the diversity of esters while reduce the contents of ester. The scanning electron microscopy showed an inhibitory effect of B. velezensis on the growth of S. fibuligera, further restraining the production of esters. Taken together, both biofilm and B. velezensis influence the ester synthesis process. The present study is the first to reveal the biofilm-producing microorganisms in fermented grains and to preliminarily investigate the effect of biofilm on the ester synthesis in the Baijiu field.


Subject(s)
Bacillus , Esters , Coculture Techniques , Bacteria , Biofilms , Saccharomyces cerevisiae
14.
Microorganisms ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838419

ABSTRACT

Phosphorus-solubilizing microorganisms release organic acids that can chelate mineral ions or reduce the pH to solubilize insoluble phosphates for use by plants; it is important to study potential phosphorus-solubilizing microorganisms for use in agriculture. In this study, PSF7 was isolated from the soil of the Wengfu Phosphorus Tailings Dump in Fuquan City, Guizhou Province, China. PSF7 was identified as Paecilomyces lilacinus, based on morphological characterization and ITS sequencing analysis. The relationship between the phosphorus-solubilizing capacity and pH variation of PSF7 under liquid fermentation was studied. The results showed that there was a significant negative correlation (-0.784) between the soluble phosphorus content of PSF7 and the pH value. When PSF7 was placed under low phosphorus stress, eight organic acids were determined from fermentation broth using HPLC, of which tartaric acid and formic acid were the main organic acids. Different optimization parameters of medium components were analyzed using response surface methodology. The optimized medium components were 23.50 g/L sucrose, 1.64 g/L ammonium sulfate and soybean residue, 1.07 g/L inorganic salts, and 9.16 g/L tricalcium phosphate, with a predicted soluble phosphorus content of 123.89 mg/L. Under the optimum medium composition, the actual phosphorus-solubilizing content of PSF7 reached 122.17 mg/L. Moreover, scanning electron microscopy analysis of the sample was carried out to characterize the phosphate-solubilizing efficiency of PSF7 on mineral phosphate. The results provide useful information for the future application of PSF7 as a biological fertilizer.

15.
Int J Food Microbiol ; 385: 110012, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36402091

ABSTRACT

In this study, the physicochemical properties, metabolites, sensory characteristics, and microbiota of black glutinous rice wine (BGRW) during traditional fermentation (TF) and inoculated fermentation (IF) were investigated, and their correlation relationships were revealed. Results indicated that IF promoted total sugar utilization and ethanol and esters synthesis in BGRW. Altogether 67 reliable metabolites were identified, 36 of which were labeled components, primarily esters (OAV > 1). Meanwhile, the concentrations of ethanol, esters, and total flavor on the 11th day of IF were close to those on the 22nd day of TF. Combined with the sensory description indicated that the IF could improve the quality of BGRW. Besides, TF contains vast unfavorable microorganisms, such as Chaetomium, Penicillium, Stachybotrys, and Trichocladium. Therefore, IF can accelerate the fermentation and enhance the flavor of BGRW, and inhibit the growth of pathogenic and spoilage organisms. Finally, Pearson's correlation analysis demonstrated that Saccharomyces, Rhizopus, Lactobacillus, Aspergillus, and Bacillus were the pivotal functional microorganisms in BGRW. The study provided scientific and effective basis for improving the quality, shortening the fermentation cycle, and controlling pathogenic and spoilage organisms of BGRW.


Subject(s)
Microbiota , Wine , Fermentation , Rhizopus oryzae , Saccharomyces cerevisiae , Ethanol , Esters
16.
Int J Biol Macromol ; 225: 1224-1234, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427612

ABSTRACT

The structure and the effect of polysaccharide from peach gum (DPG2) on ameliorating DSS-induced acute colitis in mice were investigated in the present study. The results showed that DPG2 was identified as an AG II arabinogalactan with the backbone of ß-D-(1 â†’ 6)-galactan, which consisted of mannose, glucuronic acid, galactose, xylose and arabinose with a molar ratio of 4.64:1.02:2.61:39.82:3.89:48.02. Moreover, DPG2 behaved as a flexible chain conformation with a coil-like structure with a molecular weight (Mw) of 5.21 × 105 g/mol. Furthermore, the worm-like chain model parameters for DPG2 were estimated as follows: ML = 379 nm-1, q = 0.74 nm and d = 0.82 nm. The results of the animal assay showed that the intake of DPG2 not only effectively improved the phenotypes of DSS-induced colitis in mice, but also significantly improved the oxidative stress status of mice, such as regulating NO content and T-SOD and MPO levels and repairing oxidative damage to the colonic mucosa. Moreover, DPG2 improved the inflammation of DSS-induced colitis in mice by inhibiting the secretion of the proinflammatory cytokines TNF-α, IFN-γ, IL-1ß, IL-6 and IL-17. Therefore, these results suggested that peach gum polysaccharide showed protective effects against colitis, and has great potential for the application of functional components in the food industry.


Subject(s)
Colitis , Prunus persica , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , Colon , Inflammation , Cytokines , Polysaccharides/chemistry , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
17.
Environ Res ; 216(Pt 4): 114779, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36370816

ABSTRACT

Evidence indicates that individual or groups of polybrominated diphenyl ethers (PBDEs) are associated with risk of breast cancer (BC). Epidemiological studies of PBDEs and BC progression are scarce. This study aimed to investigate the relationships between PBDE burdens in adipose tissues and prognostic biomarkers of BC as well as progression-free survival (PFS) of patients for the first time. The concentrations of 14 PBDE congeners in breast adipose tissues of 183 cases from the eastern area of southern China were analyzed by gas chromatography-mass spectrometry (GC-MS). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression models for the associations between PBDE levels and prognostic biomarkers. Kaplan-Meier and Cox regression analyses were conducted to identify the correlations between PBDEs and PFS. The results showed that BDE-99 and 190 levels were positively associated with clinical stage and N stage respectively (OR = 2.61 [1.26-5.40], OR = 2.78 [1.04-7.46]). Concentrations of BDE-28 and BDE-183 were negatively associated with the expression of estrogen receptor (ER) (OR = 0.30 [0.11-0.81]; 0.39 [0.15-0.99]) and progesterone receptor (PR) (OR = 0.36 [0.14-0.92]; 0.37 [0.15-0.91]), and increased BDE-47 was associated with lower human epidermal growth factor receptor 2 (HER2) expression (OR = 0.44 [0.23-0.86]). Adipose levels of BDE-71, 99, 138, 153, 154 and total PBDEs were positively associated with p53 expression (all P < 0.05). Finally, BDE-47, 99 and 183 were considered as independent prognostic factors for shorter PFS in the Cox models (adjusted hazard ratios = 3.14 [1.26-7.82]; 2.25 [1.03-4.94]; 2.60 [1.08-6.25], respectively). The recurrence risk and prognosis of BC may be closely bound to the body burdens of certain PBDE congeners. Further epidemiological and experimental studies are needed for confirmation.


Subject(s)
Breast Neoplasms , Halogenated Diphenyl Ethers , Humans , Female , Halogenated Diphenyl Ethers/analysis , Breast Neoplasms/epidemiology , Progression-Free Survival , Prognosis , Adipose Tissue/chemistry , China/epidemiology , Hospitals , Biomarkers
18.
Foods ; 11(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36553711

ABSTRACT

In the present study, we investigated the in vitro digestion and fermentation characteristics of three peach gum polysaccharides (PGPs) of different molecular weights; i.e., AEPG2 (1.64 × 107 g/mol), DPG2 (5.21 × 105 g/mol), and LP100R (8.50 × 104 g/mol). We observed that PGPs were indigestible during the oral, gastrointestinal, and intestinal stages. However, they were utilized by the gut microbiota with utilization rates in the order of DPG2 > AEPG2 > LP100R. Furthermore, arabinose in PGPs was preferentially utilized by the gut microbiota followed by galactose and xylose. Fermentation of peach gum polysaccharides could significantly increase the production of short-chain fatty acids (SCFAs), especially n-butyric acid. In addition, PGPs with different molecular weights values were predominantly fermented by different bacterial species. AEPG2 and DPG2 were fermented by the Bacteroidetes bacteria Bacteroides, while the dominant n-butyrate-producing bacteria was Faecalibacterium. While the LP100R was fermented by Bacteroides, Parabacteroides, Phascolarctobacterium, Dialister, Lachnospiraceae, and Blautia, the dominant n-butyrate-producing bacteria was Megamonas. These results indicated that PGPs are potential prebiotics for the food industry.

19.
Front Microbiol ; 13: 978323, 2022.
Article in English | MEDLINE | ID: mdl-36386618

ABSTRACT

Higher alcohols are closely related to the flavor and safety of rice wine. The formation of n-propanol, isobutanol, isoamyl alcohol, and phenylethanol during rice wine fermentations was for the first time investigated in this study among 10 rice cultivars from two main production regions. Rice wine made from Yashui rice, the long-grain non-glutinous rice from Guizhou, produced the highest yields of higher alcohols (487.45 mg/L), and rice wine made from five glutinous rice cultivars produced the lowest yields of higher alcohols (327.45-344.16 mg/L). An extremely strong correlation was found between the starch in rice and higher alcohols in rice wine. Further analysis first showed that the former fermentation period was key for the nutrient consumption and higher alcohol formation, with more than 55% of glucose being consumed and more than 75% of higher alcohols being synthesized in 48 h. Correlation analysis confirmed the strong correlation between nutrient consumption and higher alcohol formation including valine-isobutanol (coefficient higher than 0.8 in seven rice cultivars and higher than 0.6 in three rice cultivars), glucose-isoamyl alcohol (coefficient higher than 0.8 in five rice cultivars and higher than 0.6 in the other five rice cultivars), and glucose-phenylethanol (coefficient higher than 0.8). The correlation of threonine-n-propanol, leucine-isoamyl alcohol, phenylalanine-phenylethanol, glucose-n-propanol, and glucose-isobutanol varied among the rice wines made from 10 rice cultivars. RT-qPCR analysis on five target genes verified the variation caused by different rice cultivars. this study for the first time reported the special formation pattern of higher alcohols during rice wine fermentation, emphasizing the early contribution of glucose metabolism on the formation of isobutanol. This study highlighted the significance of rice selection for making rice wine with good quality and provided theoretical references for the control of higher alcohols, especially in the former period of rice wine fermentation.

20.
Foods ; 11(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36076771

ABSTRACT

The enantiomeric contents of 2-pentanol of Baijiu were analyzed by liquid-liquid extraction (LLE) coupled with gas chromatography-mass spectrometry (GC-MS) using ß-cyclodextrin as a chiral stationary phase. In this study, the average enantiomeric ratios R:S were 72:28, 64:36, and 94:6 in soy sauce aroma-type Baijiu (SSB), strong aroma-type Baijiu (STB), and light aroma-type Baijiu (LTB), respectively, and only (R)- configuration was found in rice aroma-type Baijiu (RTB). The highest enantiomeric concentration of 2-pentanol was found in STB. (R)-2-pentanol dominated in 48 Baijiu studied, and the concentration of (R)-2-pentanol was higher than that of the (S)-configuration. The results showed that the enantiomers of 2-pentanol were discrepant in different aroma types of Baijiu, and it may be the result of differences in raw materials, environment, and production processes. The 2-pentanol enantiomers had different odor characteristics, with different olfactory thresholds in pure water and 46% ethanol solutions by sensory analysis. (R)-2-pentanol was described as paint, rubber, grease, while the (S)-form had mint, plastic, and pungent notes. The olfactory thresholds of (R)- and (S)-form were 163.30 mg/L and 78.58 mg/L in 46% ethanol and 12.62 mg/L and 3.03 mg/L in pure water, respectively. The different enantiomeric distribution and aroma characteristics of the 2-pentanol enantiomers in Baijiu could be a potential marker for determining adulteration.

SELECTION OF CITATIONS
SEARCH DETAIL
...