Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 12: 1413604, 2024.
Article in English | MEDLINE | ID: mdl-38957204

ABSTRACT

Background: We aimed to determine the trend of TB-related deaths during the COVID-19 pandemic. Methods: TB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic. Results: A total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45-64 years old showed a surge in mortality, with an annual percent change (APC) of -2.2% pre-pandemic to 22.8% (95% CI: -1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45-64 years in 2020 (17.53%) and 2021 (33.79%). Conclusion: The steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.


Subject(s)
COVID-19 , Tuberculosis , Humans , COVID-19/mortality , Female , Middle Aged , Male , United States/epidemiology , Adult , Aged , Tuberculosis/mortality , Sex Factors , Aged, 80 and over , Pandemics
2.
Article in English | MEDLINE | ID: mdl-38868930

ABSTRACT

Most recent studies on the coronavirus disease 2019 (COVID-19) pandemic and cutaneous melanoma (CM) focused more on delayed diagnosis or advanced presentation. We aimed to ascertain mortality trends of CM between 2012 and 2022, focusing on the effects of the COVID-19 pandemic. In this serial population-based study, the National Vital Statistics System dataset was queried for mortality data. Excess CM-related mortality rates were estimated by calculating the difference between observed and projected mortality rates during the pandemic. Totally there were 108,853 CM-associated deaths in 2012-2022. CM-associated mortality saw a declining trend from 2012 to 2019 overall. However, it increased sharply in 2020 (ASMR 3.73 per 100,000 persons, 5.95% excess mortality), and remained high in 2021 and 2022, with the ASMRs of 3.82 and 3.81, corresponding to 11.17% and 13.20% excess mortality, respectively. The nonmetro areas had the most pronounced rise in mortality with 12.20% excess death in 2020, 15.33% in 2021 and 20.52% in 2022, corresponding to a 4-6 times excess mortality risk compared to large metro areas during the pandemic. The elderly had the most pronounced rise in mortality, but the mortality in the younger population was reduced.

3.
Eur J Pediatr ; 183(5): 2353-2363, 2024 May.
Article in English | MEDLINE | ID: mdl-38429545

ABSTRACT

There are increasing reports of neurological manifestation in children with coronavirus disease 2019 (COVID-19). However, the frequency and clinical outcomes of in hospitalized children infected with the Omicron variant are unknown. The aim of this study was to describe the clinical characteristics, neurological manifestations, and risk factor associated with poor prognosis of hospitalized children suffering from COVID-19 due to the Omicron variant. Participants included children older than 28 days and younger than 18 years. Patients were recruited from December 10, 2022 through January 5, 2023. They were followed up for 30 days. A total of 509 pediatric patients hospitalized with the Omicron variant infection were recruited into the study. Among them, 167 (32.81%) patients had neurological manifestations. The most common manifestations were febrile convulsions (n = 90, 53.89%), viral encephalitis (n = 34, 20.36%), epilepsy (n = 23, 13.77%), hypoxic-ischemic encephalopathy (n = 9, 5.39%), and acute necrotizing encephalopathy (n = 6, 3.59%). At discharge, 92.81% of patients had a good prognosis according to the Glasgow Outcome Scale (scores ≥ 4). However, 7.19% had a poor prognosis. Eight patients died during the follow-up period with a cumulative 30-day mortality rate of 4.8% (95% confidence interval (CI) 1.5-8.1). Multivariate analysis revealed that albumin (odds ratio 0.711, 95% CI 0.556-0.910) and creatine kinase MB (CK-MB) levels (odds ratio 1.033, 95% CI 1.004-1.063) were independent risk factors of poor prognosis due to neurological manifestations. The area under the curve for the prediction of poor prognosis with albumin and CK-MB was 0.915 (95%CI 0.799-1.000), indicating that these factors can accurately predict a poor prognosis.          Conclusion: In this study, 32.8% of hospitalized children suffering from COVID-19 due to the Omicron variant infection experienced neurological manifestations. Baseline albumin and CK-MB levels could accurately predict poor prognosis in this patient population. What is Known: • Neurological injury has been reported in SARS-CoV-2 infection; compared with other strains, the Omicron strain is more likely to cause neurological manifestations in adults. • Neurologic injury in adults such as cerebral hemorrhage and epilepsy has been reported in patients with Omicron variant infection. What is New: • One-third hospitalized children with Omicron infection experience neurological manifestations, including central nervous system manifestations and peripheral nervous system manifestations. • Albumin and CK-MB combined can accurately predict poor prognosis (AUC 0.915), and the 30-day mortality rate of children with Omicron variant infection and neurological manifestations was 4.8%.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/diagnosis , Male , Female , Child , Prognosis , Risk Factors , Child, Preschool , Infant , Adolescent , Nervous System Diseases/etiology , Nervous System Diseases/virology , Hospitalization/statistics & numerical data , Infant, Newborn , China/epidemiology , Child, Hospitalized/statistics & numerical data
4.
J Med Virol ; 96(2): e29447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305064

ABSTRACT

With the emergence of the Omicron variant, the number of pediatric Coronavirus Disease 2019 (COVID-19) cases requiring hospitalization and developing severe or critical illness has significantly increased. Machine learning and multivariate logistic regression analysis were used to predict risk factors and develop prognostic models for severe COVID-19 in hospitalized children with the Omicron variant in this study. Of the 544 hospitalized children including 243 and 301 in the mild and severe groups, respectively. Fever (92.3%) was the most common symptom, followed by cough (79.4%), convulsions (36.8%), and vomiting (23.2%). The multivariate logistic regression analysis showed that age (1-3 years old, odds ratio (OR): 3.193, 95% confidence interval (CI): 1.778-5.733], comorbidity (OR: 1.993, 95% CI:1.154-3.443), cough (OR: 0.409, 95% CI:0.236-0.709), and baseline neutrophil-to-lymphocyte ratio (OR: 1.108, 95% CI: 1.023-1.200), lactate dehydrogenase (OR: 1.993, 95% CI: 1.154-3.443), blood urea nitrogen (OR: 1.002, 95% CI: 1.000-1.003) and total bilirubin (OR: 1.178, 95% CI: 1.005-3.381) were independent risk factors for severe COVID-19. The area under the curve (AUC) of the prediction models constructed by multivariate logistic regression analysis and machine learning (RandomForest + TomekLinks) were 0.7770 and 0.8590, respectively. The top 10 most important variables of random forest variables were selected to build a prediction model, with an AUC of 0.8210. Compared with multivariate logistic regression, machine learning models could more accurately predict severe COVID-19 in children with Omicron variant infection.


Subject(s)
COVID-19 , Child, Hospitalized , Humans , Child , Infant , Child, Preschool , COVID-19/diagnosis , Logistic Models , SARS-CoV-2 , Cough , Machine Learning , Retrospective Studies
5.
Infect Agent Cancer ; 19(1): 4, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378712

ABSTRACT

OBJECTIVES: Our aim was to assess the trend in gynaecologic cancer (GC) mortality in the period from 2010 to 2022 in the United States, with focus on the impact of the pandemic on increased deaths. METHODS: GC mortality data were extracted from the Center for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) platform. We analysed mortality trends and evaluated observed vs. predicted mortality for the period from 2020 to 2022 with joinpoint regression and prediction modelling analyses. RESULTS: A total of 334,382 deaths among adults aged 25 years and older with gynaecologic cancer were documented from 2010 to 2022. The overall age-standardised mortality rate (ASMR, per 100,000 persons) for ovarian cancer-related death decreased gradually from 7.189 in 2010 to 5.517 in 2019, yielding an APC (annual percentage change) of -2.8%. However, the decrease in ovarian cancer-related mortality slowed down by more than 4-fold during the pandemic. Cervical cancer -related mortality decreased slightly prior to the pandemic and increased during the pandemic with an APC of 0.6%, resulting in excess mortality of 4.92%, 9.73% and 2.03% in 2020, 2021 and 2022, respectively. For uterine corpus cancer, the ASMR increased from 1.905 in 2010 to 2.787 in 2019, and increased sharply to 3.079 in 2021 and 3.211 in 2022. The ASMR rose steadily between 2013 and 2022, yielding an APC of 6.9%. CONCLUSIONS: Overall, we found that GC-related mortality increased during the COVID-19 pandemic, and this increase was not specific to age, race, or ethnicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...