Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 12(12): e062453, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581424

ABSTRACT

Despite the known clinical importance of hypoxemia and pneumonia, there is a paucity of evidence for these variables with respect to risk of mortality and short-term outcomes among those hospitalised with COVID-19. OBJECTIVE: Describe the prevalence and clinical course of patients hospitalised with COVID-19 based on oxygenation and pneumonia status at presentation and determine the incidence of emergent hypoxaemia or radiographic pneumonia during admission. METHODS: A retrospective study was conducted using a Canadian regional registry. Patients were stratified according to hypoxaemia/pneumonia phenotype and prevalence. Clinical parameters were compared between phenotypes using χ2 and one-way Analysis of variance (ANOVA). Cox analysis estimated adjusted Hazard Ratios (HR) for associations between disease outcomes and phenotypes. RESULTS: At emergency department (ED) admission, the prevalence of pneumonia and hypoxaemia was 43% and 50%, respectively, and when stratified to phenotypes: 28.2% hypoxaemia+/pneumonia+, 22.2% hypoxaemia+/pneumonia-, 14.5% hypoxaemia-/pneumonia+ and 35.1% hypoxaemia-/pneumonia-. Mortality was 31.1% in the hypoxaemia+/pneumonia- group and 26.3% in the hypoxaemia+/pneumonia+ group. Hypoxaemia with pneumonia and without pneumonia predicted higher probability of death. Hypoxaemia either <24 hours or ≥24 hours after hospitalisation predicted higher mortality and need for home oxygen compared with those without hypoxaemia. Patients with early hypoxaemia had higher probability of Intensive care unit (ICU) admission compared with those with late hypoxaemia. CONCLUSION: Mortality in COVID-19 infection is predicted by hypoxaemia with or without pneumonia and was greatest in patients who initially presented with hypoxaemia. The emergence of hypoxaemia was predicted by radiographic pneumonia. Patients with early and emergent hypoxaemia had similar mortality but were less likely to be admitted to ICU. There may be delayed identification of hypoxaemia, which prevents timely escalation of care.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/complications , Retrospective Studies , Canada/epidemiology , Hypoxia/etiology , Hypoxia/epidemiology , Intensive Care Units
2.
Front Big Data ; 4: 719737, 2021.
Article in English | MEDLINE | ID: mdl-34805976

ABSTRACT

The collection of expression quantitative trait loci (eQTLs) is an important resource to study complex traits through understanding where and how transcriptional regulations are controlled by genetic variations in the non-coding regions of the genome. Previous studies have focused on associating eQTLs with traits to identify the roles of trait-related eQTLs and their corresponding target genes involved in trait determination. Since most genes function as a part of pathways in a systematic manner, it is crucial to explore the pathways' involvements in complex traits to test potentially novel hypotheses and to reveal underlying mechanisms of disease pathogenesis. In this study, we expanded and applied loci2path software to perform large-scale eQTLs enrichment [i.e., eQTLs' target genes (eGenes) enrichment] analysis at pathway level to identify the tissue-specific enriched pathways within trait-related genomic intervals. By utilizing 13,791,909 eQTLs cataloged in the Genotype-Tissue Expression (GTEx) V8 data for 49 tissue types, 2,893 pathway sets reported from MSigDB, and query regions derived from the Phenotype-Genotype Integrator (PheGenI) catalog, we identified intriguing biological pathways that are likely to be involved in ten traits [Alzheimer's disease (AD), body mass index, Parkinson's disease (PD), schizophrenia, amyotrophic lateral sclerosis, non-small cell lung cancer (NSCLC), stroke, blood pressure, autism spectrum disorder, and myocardial infarction]. Furthermore, we extracted the most significant pathways for AD, such as BioCarta D4-GDI pathway and WikiPathways sulfation biotransformation reaction and viral acute myocarditis pathways, to study specific genes within pathways. Our data presented new hypotheses in AD pathogenesis supported by previous studies, like the increased level of caspase-3 in the amygdala that cleaves GDP dissociation inhibitor and binds to beta-amyloid, leading to increased apoptosis and neuronal loss. Our findings also revealed potential pathogenesis mechanisms for PD, schizophrenia, NSCLC, blood pressure, autism spectrum disorder, and myocardial infarction, which were consistent with past studies. Our results indicated that loci2path's eQTLs enrichment test was valuable in unveiling novel biological mechanisms of complex traits. The discovered mechanisms of disease pathogenesis and traits require further in-depth analysis and experimental validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...