Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Stroke Vasc Neurol ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191183

ABSTRACT

BACKGROUND: Low-intensity focused ultrasound stimulation (LIFUS) has been developed to enhance neurological repair and remodelling during the late acute stage of ischaemic stroke in rodents. However, the cellular and molecular mechanisms of neurological repair and remodelling after LIFUS in ischaemic stroke are unclear. METHODS: Ultrasound stimulation was treated in adult male mice 7 days after transient middle cerebral artery occlusion. Angiogenesis was measured by laser speckle imaging and histological analyses. Electromyography and fibre photometry records were used for synaptogenesis. Brain atrophy volume and neurobehaviour were assessed 0-14 days after ischaemia. iTRAQ proteomic analysis was performed to explore the differentially expressed protein. scRNA-seq was used for subcluster analysis of astrocytes. Fluorescence in situ hybridisation and Western blot detected the expression of HMGB1 and CAMK2N1. RESULTS: Optimal ultrasound stimulation increased cerebral blood flow, and improved neurobehavioural outcomes in ischaemic mice (p<0.05). iTRAQ proteomic analysis revealed that the expression of HMGB1 increased and CAMK2N1 decreased in the ipsilateral hemisphere of the brain at 14 days after focal cerebral ischaemia with ultrasound treatment (p<0.05). scRNA-seq revealed that this expression pattern belonged to a subcluster of astrocytes after LIFUS in the ischaemic brain. LIFUS upregulated HMGB1 expression, accompanied by VEGFA elevation compared with the control group (p<0.05). Inhibition of HMGB1 expression in astrocytes decreased microvessels counts and cerebral blood flow (p<0.05). LIFUS reduced CAMK2N1 expression level, accompanied by increased extracellular calcium ions and glutamatergic synapses (p<0.05). CAMK2N1 overexpression in astrocytes decreased dendritic spines, and aggravated neurobehavioural outcomes (p<0.05). CONCLUSION: Our results demonstrated that LIFUS promoted angiogenesis and synaptogenesis after focal cerebral ischaemia by upregulating HMGB1 and downregulating CAMK2N1 in a subcluster of astrocytes, suggesting that LIFUS activated specific astrocyte subcluster could be a key target for ischaemic brain therapy.

2.
IEEE Trans Biomed Eng ; 71(1): 150-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37432834

ABSTRACT

OBJECTIVE: The acquisition of real-time portal vein pressure (PVP) is important for portal hypertension (PH) discrimination to monitor disease progress and select treatment options. To date, the PVP evaluation approaches are either invasive or noninvasive but with less stability and sensitivity. METHODS: We customized an open ultrasound scanner to explore in vitro and in vivo the ultrasound contrast agent SonoVue microbubbles' subharmonic characteristics with acoustic pressure and local ambient pressure, and obtained promising results of PVP measurements in canine models with induced PH by ligation or embolization of portal vein. RESULTS: In in vitro experiments, the highest correlations between the subharmonic amplitude of SonoVue microbubbles and ambient pressure were observed at acoustic pressures of 523 kPa and 563 kPa (r = -0.993, -0.993, P<0.05, respectively). The correlation coefficients between absolute subharmonic amplitudes and PVP (10.7-35.4 mmHg) were the highest among existing studies using microbubbles as pressure sensors (r values ranged from -0.819 to -0.918). The PH (>16 mmHg) diagnostic capacity also achieved a high level (563 kPa, sensitivity = 93.3%, specificity = 91.7%, accuracy = 92.6%). CONCLUSION: This study proposes a promising measurement for PVP with the highest accuracy, sensitivity, and specificity in an in vivo model compared to existing studies. Future investigations are planned to assess the feasibility of this technique in clinical practice. SIGNIFICANCE: This is the first study that comprehensively investigates the role of the subharmonic scattering signals from SonoVue microbubbles in evaluating PVP in vivo. It represents a promising alternative to invasive measurements for portal pressure.


Subject(s)
Contrast Media , Hypertension, Portal , Animals , Dogs , Portal Vein/diagnostic imaging , Microbubbles , Portal Pressure , Ultrasonography/methods , Hypertension, Portal/diagnostic imaging
3.
IEEE Trans Biomed Eng ; 71(3): 831-840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37756181

ABSTRACT

A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.


Subject(s)
Imaging, Three-Dimensional , Transducers , Ultrasonography/methods , Signal-To-Noise Ratio , Electronics , Phantoms, Imaging
4.
IEEE Trans Biomed Eng ; 71(5): 1628-1639, 2024 May.
Article in English | MEDLINE | ID: mdl-38133968

ABSTRACT

Coherent plane-wave compounding technique enables rapid ultrasound imaging with comparable image quality to traditional B-mode imaging that relies on focused beam transmission. However, existing methods assume homogeneity in the imaged medium, neglecting the heterogeneity in sound velocities and densities present in real tissues, resulting in noise reverberation. This study introduces the Reverse Time Migration (RTM) method for ultrasound plane-wave imaging to overcome this limitation, which is combined with a method for estimating the speed of sound in layered media. Simulation results in a homogeneous background demonstrate that RTM reduces side lobes and grating lobes by approximately 30 dB, enhancing the contrast-to-noise ratio by 20% compared to conventional delay and sum (DAS) beamforming. Moreover, RTM achieves superior imaging outcomes with fewer compounding angles. The lateral resolution of the RTM with 5-9 angle compounding is able to achieve the effectiveness of the DAS method with 15-19 angle compounding, and the CNR of the RTM with 11-angle compounding is almost the same as that of the DAS with 21-angle compounding. In a heterogeneous background, experimental simulations and in vitro wire phantom experiments confirm RTM's capability to correct depth imaging, focusing reflected waves on point targets. In vitro porcine tissue experiments enable accurate imaging of layer interfaces by estimating the velocities of multiple layers containing muscle and fat. The proposed imaging procedure optimizes velocity estimation in complex media, compensates for the impact of velocity differences, provides more reliable imaging results.


Subject(s)
Image Processing, Computer-Assisted , Phantoms, Imaging , Ultrasonography , Ultrasonography/methods , Animals , Swine , Image Processing, Computer-Assisted/methods , Algorithms , Computer Simulation , Signal Processing, Computer-Assisted
5.
Nanomaterials (Basel) ; 13(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38063762

ABSTRACT

Environmental pollution has been decreased by using photocatalytic technology in conjunction with solar energy. An efficient method to obtain highly efficient photocatalysts is to build heterojunction photocatalysts by combining graphitic carbon nitride (g-C3N4) with layered double hydroxides (LDHs). In this review, recent developments in LDH/g-C3N4 heterojunctions and their applications for organic pollutant removal are systematically exhibited. The advantages of LDH/g-C3N4 heterojunction are first summarized to provide some overall understanding of them. Then, a variety of approaches to successfully assembling LDH and g-C3N4 are simply illustrated. Last but not least, certain unmet research needs for the LDH/g-C3N4 heterojunction are suggested. This review can provide some new insights for the development of high-performance LDH/g-C3N4 heterojunction photocatalysts. It is indisputable that the LDH/g-C3N4 heterojunctions can serve as high-performance photocatalysts to make new progress in organic pollutant removal.

6.
Research (Wash D C) ; 6: 0200, 2023.
Article in English | MEDLINE | ID: mdl-37588619

ABSTRACT

A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.

7.
Biosensors (Basel) ; 13(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37232888

ABSTRACT

The noninvasive estimation of interstitial fluid pressure (IFP) using ultrasound contrast agent (UCA) microbubbles as pressure sensors will provide tumor treatments and efficacy assessments with a promising tool. This study aimed to verify the efficacy of the optimal acoustic pressure in vitro in the prediction of tumor IFPs based on UCA microbubbles' subharmonic scattering. A customized ultrasound scanner was used to generate subharmonic signals from microbubbles' nonlinear oscillations, and the optimal acoustic pressure was determined in vitro when the subharmonic amplitude reached the most sensitive to hydrostatic pressure changes. This optimal acoustic pressure was then applied to predict IFPs in tumor-bearing mouse models, which were further compared with the reference IFPs measured using a standard tissue fluid pressure monitor. An inverse linear relationship and good correlation (r = -0.853, p < 0.001) existed between the subharmonic amplitude and tumor IFPs at the optimal acoustic pressure of 555 kPa, and pressure sensitivity was 1.019 dB/mmHg. No statistical differences were found between the pressures measured by the standard device and those estimated via the subharmonic amplitude, as confirmed by cross-validation (mean absolute errors from 2.00 to 3.09 mmHg, p > 0.05). Our findings demonstrated that in vitro optimized acoustic parameters for UCA microbubbles' subharmonic scattering can be applied for the noninvasive estimation of tumor IFPs.


Subject(s)
Microbubbles , Neoplasms , Animals , Mice , Contrast Media , Extracellular Fluid , Ultrasonography , Neoplasms/diagnostic imaging
8.
J Neural Eng ; 20(3)2023 06 01.
Article in English | MEDLINE | ID: mdl-37216935

ABSTRACT

Objective.Ultrasound has been shown to modulate the activity of retinal ganglion cells (RGCs) in mice, but the mechanism remains poorly understood. This study aims to address this question.Approach.Multi-electrode recordings together with pharmacological methods were used to investigate the possible cellular/circuitry mechanism(s) underlying the neuronal modulation induced by low-frequency (1 MHz), low-intensity (ISPTA0.5 W cm-2) ultrasound stimulation.Main results.We found that ultrasound activated mechanosensitive channels (transient receptor potential vanilloid 4 (TRPV4) channels are involved) in Müller cells, causing the release of glutamate, which acts on the extrasynapticN-methyl-D-aspartate receptors of RGCs, thus leading to the modulation of neuronal activity.Significance.Our results reveal a novel mechanism of low-frequency, low-intensity ultrasound modulation, involving TRPV4 as a mechanosensitive target for ultrasound and glutamate as an essential mediator of neuron-glia communication. These findings also demonstrate that the mechanical-force-mediated pathway is important for retinal signal modulation during visual processes, such as visual accommodation.


Subject(s)
Retina , TRPV Cation Channels , Mice , Animals , TRPV Cation Channels/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology , Neuroglia/metabolism , Glutamates/metabolism
9.
Proc Natl Acad Sci U S A ; 120(22): e2220575120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216521

ABSTRACT

Noninvasive control of neuronal activity in the deep brain can be illuminating for probing brain function and treating dysfunctions. Here, we present a sonogenetic approach for controlling distinct mouse behavior with circuit specificity and subsecond temporal resolution. Targeted neurons in subcortical regions were made to express a mutant large conductance mechanosensitive ion channel (MscL-G22S), enabling ultrasound to trigger activity in MscL-expressing neurons in the dorsal striatum and increase locomotion in freely moving mice. Ultrasound stimulation of MscL-expressing neurons in the ventral tegmental area could activate the mesolimbic pathway to trigger dopamine release in the nucleus accumbens and modulate appetitive conditioning. Moreover, sonogenetic stimulation of the subthalamic nuclei of Parkinson's disease model mice improved their motor coordination and mobile time. Neuronal responses to ultrasound pulse trains were rapid, reversible, and repeatable. We also confirmed that the MscL-G22S mutant is more effective to sensitize neurons to ultrasound compared to the wild-type MscL. Altogether, we lay out a sonogenetic approach which can selectively manipulate targeted cells to activate defined neural pathways, affect specific behaviors, and relieve symptoms of neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Subthalamic Nucleus , Mice , Animals , Brain , Subthalamic Nucleus/physiology , Nucleus Accumbens , Dopamine/physiology , Neural Pathways
10.
IEEE Trans Biomed Eng ; 70(6): 1768-1774, 2023 06.
Article in English | MEDLINE | ID: mdl-37015586

ABSTRACT

For the early diagnosis of atherosclerosis and interventions, intravascular ultrasound (IVUS) is a valuable tool for intravascular luminal imaging. Compared with the array-based method, mechanically rotating IVUS catheters dominate the clinical applications because of their less complexity and better suitability for high-frequency ultrasound imaging. However, mechanically rotating catheters are suffering from non-uniform rotational distortion (NURD) which hinders accurate image acquisition. In this study, a dual-element imaging catheter is proposed, in which two elements with the same frequency and similar performance are assembled in a back-to-back arrangement. When the catheter encounters a NURD due to acute bending, the abnormal image of one element can be replaced by the normal image of the opposite element, thus eliminating the NURD in the reconstructed image. Moreover, two images can be obtained in one rotation and the imaging frame rate is doubled in the absence of NURD. The performance of the two elements was quantitatively assessed by a wire phantom. And the complementary imaging protocols were evaluated by a tissue phantom and ex vivo porcine vessel. The results show that the proposed strategy can be promising in clinical studies.


Subject(s)
Catheters , Ultrasonography, Interventional , Animals , Swine , Ultrasonography, Interventional/methods , Ultrasonography , Phantoms, Imaging
11.
Front Chem ; 11: 1130563, 2023.
Article in English | MEDLINE | ID: mdl-36936526

ABSTRACT

Mechanosensitive channel of large conductance (MscL) is the most thoroughly studied mechanosensitive channel in prokaryotes. Owing to its small molecular weight, clear mechanical gating mechanism, and nanopore forming ability upon opening, accumulating studies are implemented in regulating cell function by activating mechanosensitive channel of large conductance in mammalian cells. This study aimed to investigate the potentials of mechanosensitive channel of large conductance as a nanomedicine and a mechano-inducer in non-small cell lung cancer (NSCLC) A549 cells from the view of molecular pathways and acoustics. The stable cytoplasmic vacuolization model about NSCLC A549 cells was established via the targeted expression of modified mechanosensitive channel of large conductance channels in different subcellular organelles. Subsequent morphological changes in cellular component and expression levels of cell death markers are analyzed by confocal imaging and western blots. The permeability of mitochondrial inner membrane (MIM) exhibited a vital role in cytoplasmic vacuolization formation. Furthermore, mechanosensitive channel of large conductance channel can be activated by low intensity focused ultrasound (LIFU) in A549 cells, and the suppression of A549 tumors in vivo was achieved by LIFU with sound pressure as low as 0.053 MPa. These findings provide insights into the mechanisms underlying non-apoptotic cell death, and validate the nanochannel-based non-invasive ultrasonic strategy for cancer therapy.

12.
J Ultrasound Med ; 42(2): 463-475, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36444908

ABSTRACT

OBJECTIVES: This study aims to determine the effect of low-intensity focused ultrasound (LIFU) in ischemic heart failure (IHF) and explore the potential neuroimmune mechanism. METHODS: Sprague-Dawley rats were subjected to ultrasound (US) with specific parameters, and electrocardiograms were recorded to analyze the effect of LIFU and/or vagal denervation on heart rate. Thereafter, myocardial infarction (MI) was induced by left anterior artery ligation, and LIFU was performed three times a day for 25 days after MI. Echocardiography, Masson staining, and ELISA were used to evaluate the effect of LIFU on the structure and function of the heart. Finally, ELISA, flow cytometry, qRT-PCR, and Western blot analysis were performed to determine the effect of LIFU on the inflammation and the expression of the cholinergic anti-inflammatory pathway (CAP)-related mediators. RESULTS: LIFU reduced heart rate in rats (control vs LIFU, P < .01), and vagotomy (VT) eliminated this effect of LIFU on heart rate (VT vs LIFU + VT, P > .01). LIFU-ameliorated IHF in terms of cardiac structure and function (MI vs MI + LIFU, P < .01), but VT abrogated the beneficial effect of LIFU (MI + VT vs MI + LIFU + VT, P > .01). After the treatment of LIFU, decreased levels of inflammatory cytokines, increased proportion of anti-inflammatory macrophages, and increased expression of CAP-related mediators (MI vs MI + LIFU, P < .01). CONCLUSIONS: LIFU ameliorates IHF whereas the CAP plays a promising role. LIFU has the potential to be a novel nonpharmacological and noninvasive therapy for the treatment of coronary artery disease and other cardiovascular diseases.


Subject(s)
Heart Failure , Myocardial Infarction , Rats , Animals , Neuroimmunomodulation , Rats, Sprague-Dawley , Heart , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Heart Failure/diagnostic imaging , Heart Failure/therapy
13.
Ultrasound Med Biol ; 49(1): 203-211, 2023 01.
Article in English | MEDLINE | ID: mdl-36266141

ABSTRACT

The current gold standard for the clinical diagnosis of portal hypertension (PH) is an invasive and indirect estimation of portal vein pressure (PVP). Therefore, the need for a non-invasive PVP measurement method is urgent. Subharmonic scattering of ultrasound contrast agent (UCA) microbubbles is under investigation in clinical research as a pressure indicator. However, the driving acoustic pressure must be optimized to improve the ambient pressure sensitivity of the subharmonic amplitude for different UCAs. In this study, for the first time, we obtained the relationship between the PVP and the amplitude of the subharmonic signal scattered from SonoVue microbubbles by using two canines to build the PH model. The results revealed a desirable linear correlation between the subharmonic amplitude and PVP (<20 mmHg) at the incident acoustic pressure of 453 kPa (r = -0.910, p < 0.005; sensitivity: -2.003 dB/mmHg); this was one order of magnitude higher in sensitivity than that of the in vitro case with a detectable pressure variation of approximately 1 mmHg. This indicates the feasibility of using UCA microbubbles to accurately measure low ambient pressures in vivo and further exhibits the potential of the method for non-invasive pressure estimation in clinical applications.


Subject(s)
Hypertension, Portal , Microbubbles , Dogs , Animals , Portal Vein/diagnostic imaging , Sulfur Hexafluoride , Phospholipids , Contrast Media , Ultrasonography/methods
14.
Front Oncol ; 12: 1012724, 2022.
Article in English | MEDLINE | ID: mdl-36425556

ABSTRACT

Objectives: This study aimed to differentially diagnose thyroid nodules (TNs) of Thyroid Imaging Reporting and Data System (TI-RADS) 3-5 categories using a deep learning (DL) model based on multimodal ultrasound (US) images and explore its auxiliary role for radiologists with varying degrees of experience. Methods: Preoperative multimodal US images of 1,138 TNs of TI-RADS 3-5 categories were randomly divided into a training set (n = 728), a validation set (n = 182), and a test set (n = 228) in a 4:1:1.25 ratio. Grayscale US (GSU), color Doppler flow imaging (CDFI), strain elastography (SE), and region of interest mask (Mask) images were acquired in both transverse and longitudinal sections, all of which were confirmed by pathology. In this study, fivefold cross-validation was used to evaluate the performance of the proposed DL model. The diagnostic performance of the mature DL model and radiologists in the test set was compared, and whether DL could assist radiologists in improving diagnostic performance was verified. Specificity, sensitivity, accuracy, positive predictive value, negative predictive value, and area under the receiver operating characteristics curves (AUC) were obtained. Results: The AUCs of DL in the differentiation of TNs were 0.858 based on (GSU + SE), 0.909 based on (GSU + CDFI), 0.906 based on (GSU + CDFI + SE), and 0.881 based (GSU + Mask), which were superior to that of 0.825-based single GSU (p = 0.014, p< 0.001, p< 0.001, and p = 0.002, respectively). The highest AUC of 0.928 was achieved by DL based on (G + C + E + M)US, the highest specificity of 89.5% was achieved by (G + C + E)US, and the highest accuracy of 86.2% and sensitivity of 86.9% were achieved by DL based on (G + C + M)US. With DL assistance, the AUC of junior radiologists increased from 0.720 to 0.796 (p< 0.001), which was slightly higher than that of senior radiologists without DL assistance (0.796 vs. 0.794, p > 0.05). Senior radiologists with DL assistance exhibited higher accuracy and comparable AUC than that of DL based on GSU (83.4% vs. 78.9%, p = 0.041; 0.822 vs. 0.825, p = 0.512). However, the AUC of DL based on multimodal US images was significantly higher than that based on visual diagnosis by radiologists (p< 0.05). Conclusion: The DL models based on multimodal US images showed exceptional performance in the differential diagnosis of suspicious TNs, effectively increased the diagnostic efficacy of TN evaluations by junior radiologists, and provided an objective assessment for the clinical and surgical management phases that follow.

15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(5): 485-489, 2022 Sep 30.
Article in Chinese | MEDLINE | ID: mdl-36254473

ABSTRACT

In order to facilitate doctors to better obtain cardiovascular images by using intravascular ultrasound imaging system and make a more accurate diagnosis, a digital coordinate conversion method of intravascular ultrasound imaging system based on CORDIC algorithm is proposed, it converts polar coordinates into rectangular coordinates through angular rotation and orientation calculation. The experimental simulation test is carried out on the platform of intravascular ultrasound imaging system by FPGA. Experimental simulation shows that, CORDIC algorithm can effectively output sine and cosine values, compared with the traditional table finding method, this algorithm has faster speed, stronger real-time performance and needs less hardware resources. It is more suitable for intravascular ultrasound imaging system.


Subject(s)
Algorithms , Computers , Computer Simulation , Ultrasonography, Interventional
16.
J Neural Eng ; 19(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35772385

ABSTRACT

Objective. Ultrasound modulates the firing activity of retinal ganglion cells (RGCs), but the effects of lower-frequency, lower-intensity ultrasound on RGCs and underlying mechanism(s) remain poorly understood. This study aims to address these questions.Approach. Multi-electrode recordings were used in this study to record the firing sequences of RGCs in isolated mouse retinas. RGCs' background firing activities as well as their light responses were recorded with or without ultrasound stimulation. Cross-correlation analyses were performed to investigate the possible cellular/circuitry mechanism(s) underlying ultrasound modulation.Main results. It was found that ultrasound stimulation of isolated mouse retina enhanced the background activity of ON-RGCs and OFF-RGCs. In addition, background ultrasound stimulation shortened the light response latency of both ON-RGCs and OFF-RGCs, while enhancing part of the RGCs' (both ON- and OFF-subtypes) light response and decreasing that of the others. In some ON-OFF RGCs, the ON- and OFF-responses of an individual cell were oppositely modulated by the ultrasound stimulation, which suggests that ultrasound stimulation does not necessarily exert its effect directly on RGCs, but rather via its influence on other type(s) of cells. By analyzing the cross-correlation between the firing sequences of RGC pairs, it was found that concerted activity occurred during ultrasound stimulation differed from that occurred during light stimulation, in both spatial and temporal aspects. These results suggest that the cellular circuits involved in ultrasound- and light-induced concerted activities are different and glial cells may be involved in the circuit in response to ultrasound.Significance. These findings demonstrate that ultrasound affects neuronal background activity and light responsiveness, which are critical for visual information processing. These results may also imply a hitherto unrecognized role of glial cell activation in the bidirectional modulation effects of RGCs and may be critical for the nervous system.


Subject(s)
Light , Retinal Ganglion Cells , Animals , Mice , Photic Stimulation , Retinal Ganglion Cells/physiology
17.
Bioact Mater ; 16: 418-432, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35386309

ABSTRACT

Glioblastoma (GBM), as a very aggressive cancer of central nervous system, is very challenging to completely cure by the conventional combination of surgical resection with radiotherapy and chemotherapy. The success of emerging immunotherapy in hot tumors has attracted considerable interest for the treatment of GBM, but the unique tumor immunosuppressive microenvironment (TIME) of GBM leads to the failure of immunotherapy. Here, we show the significant improvement of the immunotherapy efficacy of GBM by modulating the TIME through novel all-in-one biomimetic nanoparticles (i.e. CS-I/J@CM NPs). The nanoparticles consist of utrasmall Cu2-x Se nanoparticles (NPs) with outstanding intrinsic properties (e.g., photo-responsive Fenton-like catalytic property for inducing immunogenic cell death (ICD) and alleviating the hypoxia of tumor), indoximod (IND, an inhibitor of indoleamine-2,3-dioxygenease in tumor), JQ1 (an inhibitor for reducing the expression of PD-L1 by tumor cells), and tumor cell membrane for improving the targeting capability and accumulation of nanoparticles in tumor. We reveal that these smart CS-I/J@CM NPs could drastically activate the immune responses through remodeling TIME of GBM by multiple functions. They could (1) increase M1-phenotype macrophages at tumor site by promoting the polarization of tumor-associated macrophages through the reactive oxygen species (ROS) and oxygen generated from the Fenton-like reaction between nanoparticles and H2O2 within tumor under NIR II irradiation; (2) decrease the infiltration of Tregs cells at tumor site through the release of IND; (3) decrease the expression of PD-L1 on tumor cells through JQ1. The notable increments of anti-tumor CD8+T cells in the tumor and memory T cells (TEM) in the spleen show excellent therapy efficacy and effectively prevent the recurrence of GBM after modulation of the TIME. This work demonstrates the modulation of TIME could be a significant strategy to improve the immunotherapy of GBM and other cold tumors.

18.
Phys Med Biol ; 67(10)2022 05 02.
Article in English | MEDLINE | ID: mdl-35349987

ABSTRACT

Objective.Synthetic transmit aperture (STA) ultrasound imaging is well known for ideal focusing in the full field of view. However, it suffers from low signal-to-noise ratio (SNR) and low frame rate, because each transducer element must be activated individually. In our previous study, we encoded all the transducer elements with partial Hadamard matrix and reconstructed the complete STA dataset with compressed sensing (CS) algorithm (CS-STA). As all the elements are activated in each transmission and the number of transmissions is smaller than that of STA, this method can achieve higher SNR and higher frame rate. Its main drawback is the time-consuming CS reconstruction (∼hours). In this study, we propose to accelerate the complete STA dataset reconstruction with minimall2-norm least squares method.Approach.Partial Hadamard apodized plane wave (PW) transmissions were performed to acquire the PW dataset. Thereafter, the complete STA dataset can be reconstructed from the PW dataset with minimall2-norm least squares method. Due to the orthogonality of partial Hadamard matrix, the minimall2-norm least squares solution can be easily calculated.Main results.The proposed method is tested with simulation data and experimental phantom andin-vivodata. The results demonstrate that the proposed method achieves ∼5 × 103times faster reconstruction speed than CS algorithm. The simulation results demonstrate that the proposed method is capable of achieving the same accuracy as the conventional CS-STA method for the STA dataset reconstruction. The simulations, phantom andin-vivoexperiments show that the proposed method is capable of improving the generalized contrast-to-noise ratio (gCNR) and SNR with maintained spatial resolution and fewer transmissions, compared with STA.Significance.In conclusion, the improved image quality and reduced computational time of LS-STA pave the way for its real-time applications in the clinics.


Subject(s)
Image Processing, Computer-Assisted , Computer Simulation , Image Processing, Computer-Assisted/methods , Least-Squares Analysis , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography/methods
19.
Biomaterials ; 280: 121287, 2022 01.
Article in English | MEDLINE | ID: mdl-34864449

ABSTRACT

Radio-resistance of glioblastoma (GBM) remains a leading cause of radiotherapy failure because of the protective autophagy induced by X-Ray irradiation and tumor cells' strong capability of repairing damaged DNA. It is of great importance to overcome the radio-resistance for improving the efficacy of radiotherapy. Herein, we report the novel mechanism of core-shell copper selenide coated gold nanoparticles (Au@Cu2-xSe NPs) inhibiting the protective autophagy and DNA repair of tumor cells to drastically boost the radiotherapy efficacy of glioblastoma. We reveal that the core-shell Au@Cu2-xSe NPs can inhibit the autophagy flux by effectively alkalizing lysosomes. They can increase the SQSTM1/p62 protein levels of tumor cells without influencing their mRNA. We also reveal that Au@Cu2-xSe NPs can increase the ubiquitination of DNA repair protein Rad51, and promote the degradation of Rad51 by proteasomes to prevent the DNA repair. The simultaneous inhibition of protective autophagy and DNA repair significantly suppress the growth of orthotopic GBM by using radiotherapy and our novel Au@Cu2-xSe NPs. Our work provides a new insight and paradigm to significantly improve the efficacy of radiotherapy by rationally designing theranostic nano-agents to simultaneously inhibit protective autophagy and DNA repair of tumor cells.


Subject(s)
Glioblastoma , Metal Nanoparticles , Autophagy , Cell Line, Tumor , DNA Repair , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Gold/pharmacology , Humans
20.
Article in English | MEDLINE | ID: mdl-34437062

ABSTRACT

High-definition intravascular ultrasound (HD-IVUS) utilizing more than 80 MHz frequency to assess atherosclerotic plaque, can theoretically achieve an axial resolution of less than [Formula: see text]. However, the blood is a high-attenuation source at high frequency, which would affect the imaging quality. There has been no research evaluating the blood-induced influence on HD-IVUS imaging. And whether a temporary removal of blood is needed for HD-IVUS is unknown. In this study, an ultrahigh-frequency (100 MHz) ultrasound transducer was developed to evaluate the blood-induced attenuation for HD-IVUS imaging. A series of tungsten-wire phantom images in saline and blood at varying hematocrits were obtained. The images showed that blood did influence the ultrahigh-frequency imaging quality greatly. The signal-to-noise ratio (SNR) decrease by 71.7% in porcine whole blood compared to that in saline at the same depth of 2.3 mm. Moreover, the potential flushing schemes for HD-IVUS were studied in varying hematocrits. Three flushing agents commonly used in intravascular optical coherence tomography (IV-OCT) were investigated, including iohexol, mannitol, and dextran 5% and saline as the control group. The attenuation of blood in varying hematocrits/flushing agents was measured from 90 to 110 MHz. The result indicated dextran 5% was a suitable flushing agent for HD-IVUS due to its less signal attenuation compared to others.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Animals , Coronary Vessels/diagnostic imaging , Equipment Design , Swine , Tomography, Optical Coherence , Ultrasonography , Ultrasonography, Interventional
SELECTION OF CITATIONS
SEARCH DETAIL
...