Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 341: 769-781, 2022 01.
Article in English | MEDLINE | ID: mdl-34952044

ABSTRACT

As a research hotspot, immune checkpoint inhibitors (ICIs) is often combined with other therapeutics in order to exert better clinical efficacy. To date, extensive laboratory and clinical investigations into the combination of ICIs and chemotherapy have been carried out, demonstrating augmented effectiveness and broad application prospects in anti-tumor therapy. However, the administration of these two treatment modalities is usually randomized or fixed to a given chronological order. Nevertheless, the pharmacological effect of drug is closely related to its exposure behavior in vivo, which may consequently affect the synergistic outcomes of a combined therapy. In this study, we prepared a lipid nanoparticle encapsulating docetaxel (DTX-VNS), and associated it with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) for the treatment of malignant tumors. To identify the optimum timing and sequencing for chemotherapy and immunotherapy, we designed three administration regimes, including the simultaneous delivery of DTX-VNS and αPD-1(DTX-VNS@αPD-1), DTX-VNS delivery before (DTX-VNS plus αPD-1) or post (αPD-1 plus DTX-VNS) PD-1 blockade with an interval of two days. Analysis from mass spectrometry, multi-factor detection and other techniques indicated that DTX-VNS plus αPD-1 initiated a powerful anti-tumor response in multiple tumor models, contributing to a remarkably reshaped tumor microenvironment landscape, which may attribute to the maximum therapeutic additive effects arise from a concomitant exposure of DTX-VNS and αPD-1 at the tumor site. By profiling the exposure kinetics of nanoparticles and αPD-1 in vivo, we defined the administration schedule with utmost therapeutic benefits, which may provide a valuable clinical reference for the rational administration of immunochemotherapy.


Subject(s)
Immunotherapy , Nanoparticles , Cell Line, Tumor , Liposomes , Nanoparticles/chemistry
2.
Life Sci ; 286: 120042, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34678262

ABSTRACT

At present, little information on the biopharmaceutical behaviour of proton pump inhibitors (PPIs) describing their absorption and biodistribution in vivo has been reported because the extreme instability of PPIs in the gastrointestinal environment makes it difficult to analyze such behaviour. In this work, a modified rat in situ intestinal perfusion model was employed to investigate absorption in the gastrointestinal tract and subsequent biodistribution of several PPIs (ilaprazole, esomeprazole and rabeprazole), which have different physicochemical properties. Our data indicated that PPIs exhibited significantly enhanced absorption rates in the whole intestine, including the duodenum, jejunum, ileum and colon, corresponding to the increase in the oil-water partition coefficient (LogP). PPIs and corresponding salt types showed no obvious differences in absorption, implying that solubility changes in the PPI have little effect on its absorption in the gastrointestinal tract. Among these PPIs, ilaprazole presented a more stable intestinal absorption behaviour, as well as more distribution and longer residence time in the stomach by HPLC-MS/MS analysis and radioactivity counts after 14C radiolabelling. These results may be useful information for PPI optimization and oral formulation design.


Subject(s)
Absorption, Physicochemical/drug effects , Intestinal Absorption/drug effects , Proton Pump Inhibitors/pharmacology , 2-Pyridinylmethylsulfinylbenzimidazoles/pharmacology , Absorption, Physicochemical/physiology , Adsorption , Animals , Biological Products/pharmacokinetics , Biological Products/pharmacology , Chemical Phenomena/drug effects , China , Esomeprazole/pharmacology , Female , Ileum/metabolism , Intestinal Absorption/physiology , Jejunum/metabolism , Male , Proton Pump Inhibitors/metabolism , Proton Pump Inhibitors/pharmacokinetics , Rabeprazole/pharmacology , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , Tissue Distribution/drug effects
3.
Eur J Pharm Biopharm ; 149: 135-144, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32007590

ABSTRACT

The major therapeutic strategy for acid-related gastrointestinal diseases in clinic is to reduce the excretion of gastric acid by oral administration of proton-pump inhibitors (PPIs). However, it is quite a challenge to study the oral absorption behaviors of PPIs considering their extreme instability under gastrointestinal environment. As a result, little information has been reported on PPI oral absorption so far, hindering the further development of PPI-contained oral preparations. Here, we first investigated the degradation rate of three representative PPIs, including ilaprazole, ilaprazole sodium and rabeprazole sodium. Then a modified in situ intestine absorption method in rat was established: through the temperature control by the heat exchangers, the perfusate was kept at physiological temperature only when passing through the intestine while it was maintained at 4 °C outside the intestine. Therefore PPIs could maintained sufficiently high stability under proper temperature control. Our data demonstrated that both ilaprazole and ilaprazole sodium exhibited significantly higher absorption efficiency than rabeprazole sodium did through the comparison of their apparent permeability coefficients and steady-state plasma concentrations after perfusion in the duodenum, jejunum, ileum and colon, mainly attributing to their more suitable oil-water partition coefficient. The duodenum could be the best site for the oral absorption of PPIs. Ilaprazole outperformed its sodium salt form with its stable absorption behavior in tested four intestinal segments. Furthermore, after intravenous or oral administration, ilaprazole exhibited a longer residence time and a higher accumulation in the stomach than in most of other tissues/organs. However, it was also found that the accumulation was heterogeneous and mainly located in mucosa cells of the stomach. Our further study indicated that there was no significant difference on the oral absorption efficiency of ilaprazole between female and male rats but ilaprazole underwent a faster metabolism in male rats after oral absorption. Our study provided a valuable guidance for the design of oral formulation and the optimization of PPI-contained formulations.


Subject(s)
2-Pyridinylmethylsulfinylbenzimidazoles/pharmacokinetics , Intestinal Absorption , Proton Pump Inhibitors/pharmacokinetics , Rabeprazole/pharmacokinetics , 2-Pyridinylmethylsulfinylbenzimidazoles/administration & dosage , Administration, Intravenous , Administration, Oral , Animals , Drug Stability , Female , Male , Proton Pump Inhibitors/administration & dosage , Rabeprazole/administration & dosage , Rats , Rats, Sprague-Dawley , Sex Factors , Temperature , Tissue Distribution
4.
Theranostics ; 10(3): 1166-1180, 2020.
Article in English | MEDLINE | ID: mdl-31938058

ABSTRACT

Excessive oxidative stress is always associated with the serious side effects of chemotherapy. In the current study, we developed a vitamin E based strongly reductive nanosystem to increase the loading efficiency of docetaxel (DTX, DTX-VNS), reduce its side toxicity and enhance the antitumor effect. Methods: We used Förster Resonance Energy Transfer (FRET) to reveal the in vivo and in vitro fate of DTX-VNS over time. All FRET images were observed using the Maestro imaging system (CRI, Inc., Woburn, MA) and Fluo-View software (Olympus LX83-FV3000). Results: Through FRET analyzing, we found that our nanosystem showed a selective rapider release of drugs in tumors compared to normal organs due to the higher levels of ROS in tumor cells than normal cells, and the accumulation of DTX at tumor sites in the DTX-VNS group was also notably more than that in the Taxotere group after 24 h injection. Meanwhile, DTX-VNS had a prominently stronger anti-tumor effect in various models than Taxotere, and had a synergistic effect of immunotherapy. Conclusions: Our work presented a useful reference for clinical exploration of the in vivo behavior of nanocarriers (DTX-VNS), inhibition oxidative stress and selective release of drugs at tumor sites, thus reducing the side effects and enhancing the anti-tumor effects.


Subject(s)
Antineoplastic Agents , Docetaxel , Drug Carriers/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Docetaxel/administration & dosage , Docetaxel/pharmacology , Drug Liberation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...