Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1380912, 2024.
Article in English | MEDLINE | ID: mdl-38655090

ABSTRACT

Background: There is growing evidence of associations between the gut microbiota and anxiety disorders, where changes in gut microbiotas may affect brain function and behavior via the microbiota-gut-brain axis. However, population-level studies offering a higher level of evidence for causality are lacking. Our aim was to investigate the specific gut microbiota and associated metabolites that are closely related to anxiety disorders to provide mechanistic insights and novel management perspectives for anxiety disorders. Method: This study used summary-level data from publicly available Genome-Wide Association Studies (GWAS) for 119 bacterial genera and the phenotype "All anxiety disorders" to reveal the causal effects of gut microbiota on anxiety disorders and identify specific bacterial genera associated with anxiety disorders. A two-sample, bidirectional Mendelian randomization (MR) design was deployed, followed by comprehensive sensitivity analyses to validate the robustness of results. We further conducted multivariable MR (MVMR) analysis to investigate the potential impact of neurotransmitter-associated metabolites, bacteria-associated dietary patterns, drug use or alcohol consumption, and lifestyle factors such as smoking and physical activity on the observed associations. Results: Bidirectional MR analysis identified three bacterial genera causally related to anxiety disorders: the genus Eubacterium nodatum group and genus Ruminococcaceae UCG011 were protective, while the genus Ruminococcaceae UCG011 was associated with an increased risk of anxiety disorders. Further MVMR suggested that a metabolite-dependent mechanism, primarily driven by tryptophan, tyrosine, phenylalanine, glycine and cortisol, which is consistent with previous research findings, probably played a significant role in mediating the effects of these bacterial genera to anxiety disorders. Furthermore, modifying dietary pattern such as salt, sugar and processed meat intake, and adjusting smoking state and physical activity levels, appears to be the effective approaches for targeting specific gut microbiota to manage anxiety disorders. Conclusion: Our findings offer potential avenues for developing precise and effective management approaches for anxiety disorders by targeting specific gut microbiota and associated metabolites.

2.
Food Chem ; 341(Pt 1): 128148, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33038776

ABSTRACT

The brown seaweed Undaria pinnatifida polysaccharides show various biological activities, but their hypoglycemic activity and the underlying mechanism remain unclear. Here, three fractions of sulfated polysaccharides Up-3, Up-4, and Up-5 were prepared by microwave-assisted extraction from U. pinnatifida. In vitro assays demonstrated that Up-3 and Up-4 had strong α-glucosidase inhibitory activity, and Up-3, Up-4, and Up-5 could improve the glucose uptake in insulin-resistant HepG2 cells without affecting their viability. In vivo studies indicated Up-3 and Up-4 markedly reduced postprandial blood glucose levels. Up-U (a mixture of Up-3, Up-4, and Up-5), reduced fasting blood glucose levels, increased glucose tolerance and alleviated insulin resistance in HFD/STZ-induced hyperglycemic mice. Histopathological observation and hepatic glycogen measurement showed that Up-U alleviated the damage of the pancreas islet cell, reduced hepatic steatosis, and promoted hepatic glycogen synthesis. These findings suggest that Up-U could alleviate postprandial and HFD/STZ-induced hyperglycemia and was a potential agent for diabetes treatment.


Subject(s)
Hypoglycemic Agents/pharmacology , Polysaccharides/pharmacology , Seaweed/chemistry , Undaria/chemistry , Animals , Chemical Fractionation , Diet, High-Fat/adverse effects , Glucose/metabolism , Glucose/pharmacokinetics , Hep G2 Cells , Humans , Hyperglycemia/drug therapy , Hyperglycemia/etiology , Hypoglycemic Agents/chemistry , Insulin/pharmacology , Insulin Resistance , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Microwaves , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Postprandial Period , Sulfates/chemistry
3.
Appl Microbiol Biotechnol ; 104(5): 1883-1890, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932892

ABSTRACT

C-Glycosides, a special type of glycoside, are frequently distributed in many kinds of medicinal plants, such as puerarin and mangiferin, showing various and significant bioactivities. C-Glycosides are usually characterized by the C-C bond that forms between the anomeric carbon of sugar moieties and the carbon atom of aglycon, which is usually resistant against acidic hydrolysis and enzymatic treatments. Interestingly, C-glycosides could be cleaved by several intestinal bacteria, but whether the enzymatic cleavage of C-C glycosidic bond is reduction or hydrolysis has been controversial; furthermore, whether existence of a "C-glycosidase" directly catalyzing the cleavage is not clear. Here we review research advances about the discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bond with an emphasis on the identification of enzymes manipulation the deglycosylation. Finally, we give a brief conclusion about the mechanism of C-glycoside deglycosylation and perspectives for future study in this field.


Subject(s)
Bacteria/enzymology , Bacteria/metabolism , Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Glycosides/metabolism , Intestines/microbiology , Animals , Bacteria/isolation & purification , Bacterial Proteins/genetics , Biotransformation , Glycoside Hydrolases/genetics , Glycosides/chemistry , Glycosylation , Humans , Molecular Structure
4.
Small ; 14(35): e1802045, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30084537

ABSTRACT

In this research, bulk graphitic carbon nitride (g-C3 N4 ) is exfoliated and transferred to the carbon nitride nanosheets (CNNSs), which are then coupled with MIL-88B(Fe) to form the hybrid. From the results of the powder X-ray diffraction, scanning electronic microscopy and thermogravimetric analysis, it is found that the doping of CNNSs on the surface of MIL-88(Fe) could maintain the basic structure of MIL-88B(Fe), and the smaller dimension of CNNSs might influence the crystallization process of metal-organic frameworks (MOFs) compared to bulk g-C3 N4 . Besides, the effects of the CNNSs incorporation on photocatalysis are also investigated. Through the photoluminescence spectra, electrochemical measurements, and photocatalytic experiments, the hybrid containing 6% CNNSs is certified to possess the highest catalytic activity to degrade methylene blue and reduce Cr(VI) under visible light. The improvement of the photocatalytic performance can be attributed to the matched energy level which favors the formation of the heterojunctions. Besides, it promotes the charge migration such that the contact between MOFs and CNNSs is more intimate, which can be inferred from the electronic microscopy images. Finally, a possible photocatalytic mechanism is put forward by the relative calculation and the employment of the scavengers to trap the active species.

5.
Oncotarget ; 8(32): 53465-53481, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28881824

ABSTRACT

We used high-throughput RNA sequencing to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord during ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) in rats. We observed that of 32662 mRNAs, 4296 out were differentially expressed in the T8-12 segments of the spinal cord upon I/R-induced AKI. Among these, 62 were upregulated and 34 were downregulated in response to I/R (FDR < 0.05, |log2FC| > 1). Further, 52 differentially expressed lncRNAs (35 upregulated and 17 downregulated) were identified among 3849 lncRNA transcripts. The differentially expressed mRNAs were annotated as "biological process," "cellular components" and "molecular functions" through gene ontology enrichment analysis. KEGG pathway enrichment analysis showed that cell cycle and renin-angiotensin pathways were upregulated in response to I/R, while protein digestion and absorption, hedgehog, neurotrophin, MAPK, and PI3K-Akt signaling were downregulated. The RNA-seq data was validated by qRT-PCR and western blot analyses of select mRNAs and lncRNAs. We observed that Bax, Caspase-3 and phospho-AKT were upregulated and Bcl-2 was downregulated in the spinal cord in response to renal injury. We also found negative correlations between three lncRNAs (TCONS_00042175, TCONS_00058568 and TCONS_00047728) and the degree of renal injury. These findings provide evidence for differential expression of lncRNAs and mRNAs in the lower thoracic spinal cord following I/R-induced AKI in rats and suggest potential clinical applicability.

6.
Oncotarget ; 7(52): 86547-86560, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27888806

ABSTRACT

Cell fate determination factor dachshund1 (DACH1) is a chromosome-associated protein that regulates cellular differentiation throughout development. Recent genome-wide association studies have show that missense mutation in DACH1 leads to hereditary renal hypodysplasia. Renal DACH1 expression can be used to estimate glomerular filtration rate (eGFR). We firstly characterized the function of DACH1 in normal and diseased renal tissue using immunohistochemistry to assess DACH1 in human renal biopsy specimens from 40 immunoglobulin A nephropathy (IgAN) patients, 20 idiopathic membranous nephropathy (IMN) patients, and 15 minimal change disease (MCD) patients. We found that DACH1 expression was decreased in the nephropathy group relative to healthy controls. DACH1 staining in the glomerulus correlated positively with eGFR (r = 0.41, p < 0.001) but negatively with serum creatinine (r = -0.37, p < 0.01). In vitro, DACH1 overexpression in human podocytes or HK2 cells decreased expression of cyclin D1, but increased expression of p21 and p53, which suggested that DACH1 overexpression in human podocytes or HK2 cells increased the G1/S phase or G2/M cell arrest. Together, These findings indicate that DACH1 expression is decreased in glomerulopathy imply a potential role for DACH1 in the this development of human chornic glomerulopathy. These data suggest that DACH1 is a potential a marker of disease progression and severity for glomerular diseases.


Subject(s)
Eye Proteins/physiology , Glomerulonephritis, IGA/pathology , Glomerulonephritis, Membranous/pathology , Nephrosis, Lipoid/pathology , Transcription Factors/physiology , Adult , Apoptosis , Cyclin-Dependent Kinase Inhibitor p21/analysis , Disease Progression , Eye Proteins/analysis , Female , Humans , Immunohistochemistry , Kidney/chemistry , Male , Middle Aged , Severity of Illness Index , Transcription Factors/analysis , Tumor Suppressor Protein p53/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...