Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Res ; 1830: 148796, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38341169

ABSTRACT

Eph receptors are the largest subfamily of receptor tyrosine kinases, and they have been shown to play a crucial role in glioma. The EphB3 receptor is a member of this family, and its effect on the invasion, migration and proliferation of glioma cells was examined in this study. It was found that the expression of EphB3 was decreased in glioma specimens with increasing tumor grade. Additionally, the U87MG and U251 cell lines showed low levels of EphB3 expression. This finding was consistent with the negative correlation between EphB3 expression in glioma tissues and tumor grade. Depletion of EphB3 gene in U87MG and U251 cell lines resulted in a substantial enhancement of their invasion, migration, and proliferation capacities in vitro. Furthermore, the knockdown of EphB3 led to an upregulation of EGFR, p-PI3K, and p-AKT protein levels. On the other hand, EphB3 overexpression reduced the invasiveness, proliferative capacity and migration rate of U87MG and U251 cells, and downregulated EGFR, p-PI3K and p-AKT. These findings indicate that EphB3 functions as a tumor suppressor in glioma, and its downregulation enhances the malignant potential of glioma cells by activating the EGFR-PI3K/AKT pathway. Thus, EphB3 is a promising diagnostic marker for glioma, and the EphB3-EGFR-PI3K / AKT axis deserves further investigation as a potential therapeutic target.


Subject(s)
Glioma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, EphB3/genetics , Receptor, EphB3/metabolism , Cell Proliferation/genetics , Signal Transduction , Glioma/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Cell Movement/genetics , Neoplasm Invasiveness
2.
Front Oncol ; 13: 1249448, 2023.
Article in English | MEDLINE | ID: mdl-37781198

ABSTRACT

Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.

3.
Cell Death Dis ; 14(3): 207, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949071

ABSTRACT

The mesenchymal (MES) subtype of glioblastoma (GBM) is a highly aggressive, malignant and proliferative cancer that is resistant to chemotherapy. Runt-related transcription factor 1 (RUNX1) was shown to support MES GBM, however, its underlying mechanisms are unclear. Here, we identified USP10 as a deubiquitinating enzyme that regulates RUNX1 stabilization and is mainly expressed in MES GBM. Overexpression of USP10 upregulated RUNX1 and induced proneural-to-mesenchymal transition (PMT), thus maintaining MES properties in GBM. Conversely, USP10 knockdown inhibited RUNX1 and resulted in the loss of MES properties. USP10 was shown to interact with RUNX1, with RUNX1 being stabilized upon deubiquitylation. Moreover, we found that USP10 inhibitor Spautin-1 induced RUNX1 degradation and inhibited MES properties in vitro and in vivo. Furthermore, USP10 was strongly correlated with RUNX1 expression in samples of different subtypes of human GBM and had prognostic value for GBM patients. We identified USP10 as a key deubiquitinase for RUNX1 protein stabilization. USP10 maintains MES properties of GBM, and promotes PMT of GBM cells. Our study indicates that the USP10/RUNX1 axis may be a potential target for novel GBM treatments.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Core Binding Factor Alpha 2 Subunit/genetics , Cell Line, Tumor , Brain Neoplasms/pathology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
4.
Front Oncol ; 11: 795633, 2021.
Article in English | MEDLINE | ID: mdl-35111679

ABSTRACT

Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.

5.
Am J Cancer Res ; 10(4): 1156-1169, 2020.
Article in English | MEDLINE | ID: mdl-32368392

ABSTRACT

Aberrant activation of epithelial-mesenchymal transition (EMT) pathway drives the invasion and migration of multiple cancers including glioblastoma (GBM). Clinical interventions focused on inhibiting EMT are of increasing interest in the treatment of GBM. In the present study, we discovered that glioma tissues and cells, especially GBMs show significantly up-modulated ubiquitin-specific protease 18 (USP18) expression. Functionally, decreased USP18 expression attenuated GBM cell invasion and migration through repressing EMT. Moreover, a critical EMT-inducing transcription factor Twist1 that activates EMT, was identified as a downstream target of USP18. Mechanistically, USP18 interacts with Twist1, removes its ubiquitination off, and subsequently stabilizes it. Short hairpin RNA-mediated downregulation of USP18 accelerates Twist1 degradation, resulting in the inhibition of GBM cell invasion and migration in vitro and in a nude mouse model. Importantly, reconstituted expression of Twist1 almost completely rescues the inhibitory effect of USP18 depletion on GBM cell invasion, migration and tumor formation. Clinically, the expression levels of USP18 and Twist1 are positively relevant in GBM specimens, and high expression of USP18 correlates with patient's poor outcome. Finally, our findings unveil the crucial role of USP18 on GBM malignancy. Targeting USP18-Twist1 regulatory axis may open a novel avenue for GBM treatment.

6.
Front Cell Dev Biol ; 8: 615970, 2020.
Article in English | MEDLINE | ID: mdl-33614625

ABSTRACT

Objectives: Glioma is the most common and aggressive type of primary central nervous system (CNS) tumor in adults and is associated with substantial mortality rates. The aim of our study was to evaluate the prognostic significance and function of the complement factor I (CFI) in glioma. Materials and Methods: The expression levels of CFI in glioma tissues and the survival of the CFIhigh and CFIlow patient groups were analyzed using The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx). The correlation between CFI expression and clinicopathological features of glioma was determined by univariate and multivariate Cox regression analyses in the Chinese Glioma Genome Atlas (CGGA) database. The functional role of CFI in glioma was established through routine in vitro and in vivo assays. Results: CFI is overexpressed in glioma and its high levels correlated with poor outcomes in both TCGA and CGGA datasets. Furthermore, CFI was identified as an independent prognostic factor of glioma in the CGGA database. CFI knockdown in glioma cell lines inhibited growth in vitro and in vivo, whereas its ectopic expression increased glioma cell proliferation, migration, and invasion in vitro. CFI protein levels were also significantly higher in the glioma tissues resected from patients and correlated to worse prognosis. Conclusions: CFI is a potential prognostic biomarker in glioma and drives malignant progression.

7.
Int J Clin Exp Pathol ; 12(2): 539-548, 2019.
Article in English | MEDLINE | ID: mdl-31933858

ABSTRACT

EphB2, a receptor tyrosine kinase for ephrin ligands, is overexpressed in various cancers and plays an important role in tumor progression. EPHB2 promotes endothelial-mesenchymal transition (EMT) and elicits associated pathologic characteristics of glioblastoma multiforme (GBM) such as invasion and migration. However, the mechanisms of the EPHB2 regulatory network in glioma remain enigmatic. Here, we report that EPHB2 is epigenetically overexpressed in hypoxia, a condition highly prevalent in malignancy. Furthermore, HIF-2α is required for EPHB2 stabilization by hypoxia. Lastly, we discovered that the overexpression of EPHB2 promotes GBM invasion by the phosphorylation of paxillin in hypoxia. These findings establish the HIF-2α-EPHB2-paxillin axis as a regulatory mechanism of epithelial-mesenchymal transition.

8.
J Neurooncol ; 139(3): 547-562, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29774498

ABSTRACT

PURPOSE: MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of glioma. However, the underlying molecular mechanisms are still unclear. METHODS: We performed microarray analysis to evaluate miRNA expression levels in 158 glioma tissue samples, and examined miR-1231 levels in glioma samples and healthy brain tissues using qRT-PCR. In vitro analyses were performed using miR-1231 mimics, inhibitors, and siRNA targeting EGFR. We used flow cytometry, CCK-8 assays, and colony formation assays to examine glioma proliferation and cell cycle analysis. A dual luciferase reporter assay was performed to examine miR-1231 regulation of EGFR, and the effect of upregulated miR-1231 was investigated in a subcutaneous GBM model. RESULTS: We found that miR-1231 expression was decreased in human glioma tissues and negatively correlated with EGFR levels. Moreover, the downregulation of miR-1231 negatively correlated with the clinical stage of human glioma patients. miR-1231 overexpression dramatically downregulated glioma cell proliferation, and suppressed tumor growth in a nude mouse model. Bioinformatics prediction and a luciferase assay confirmed EGFR as a direct target of miR-1231. EGFR overexpression abrogated the suppressive effect of miR-1231 on the PI3K/AKT pathway and G1 arrest. CONCLUSIONS: Taken together, these results demonstrated that EGFR is a direct target of miR-1231. Our findings suggest that the miR-1231/EGFR axis may be a helpful future diagnostic target for malignant glioma.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , MicroRNAs/metabolism , Animals , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , Male , Mice, Nude , Neoplasm Grading , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
9.
Am J Cancer Res ; 7(9): 1835-1849, 2017.
Article in English | MEDLINE | ID: mdl-28979807

ABSTRACT

Glioma is a malignant tumor for which new therapies are needed. Growing evidence has demonstrated that microRNAs (miRNAs) have a major effect on glioma development. Here, we aimed to characterize a novel anti-cancer miRNA, miR-625, by investigating its expression, function, and mechanism of action in glioma progression. The expression of miR-625 and its target mRNA in human glioma tissues and cell lines was assessed by real-time PCR, western blotting, and immunohistochemistry. Functional significance was assessed by examining cell cycle progression, proliferation, apoptosis, and chemosensitivity to temozolomide in vitro, and by examining growth of subcutaneous glioblastoma in a mouse model in vivo. We found that miR-625 expression was significantly lower in human glioma samples and cell lines than in normal brain tissue and human astrocytes. Furthermore, miR-625 overexpression not only suppressed glioma cell proliferation in culture and in the tumor xenograft model but also induced cell cycle arrest and apoptosis. AKT2 was identified as a direct miR-625 target in glioma cell lines, and AKT2 overexpression reversed the suppressive effects of miR-625 in the cell lines and the tumor xenograft model. Finally, we found that the sensitivity of glioma cells to temozolomide was increased by miR-625 overexpression, and this was reversed by concomitant AKT2 expression. In conclusion, our findings suggest that the miR-625-AKT2 axis could be a new prognostic marker and diagnostic target for gliomas.

10.
Cancer Res ; 76(8): 2340-53, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26960975

ABSTRACT

The acquisition of drug resistance is a persistent clinical problem limiting the successful treatment of human cancers, including glioblastoma (GBM). However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. In this study, we report that Pol κ, an error-prone polymerase that participates in translesion DNA synthesis, was significantly upregulated in GBM cell lines and tumor tissues following temozolomide treatment. Overexpression of Pol κ in temozolomide-sensitive GBM cells conferred resistance to temozolomide, whereas its inhibition markedly sensitized resistant cells to temozolomide in vitro and in orthotopic xenograft mouse models. Mechanistically, depletion of Pol κ disrupted homologous recombination (HR)-mediated repair and restart of stalled replication forks, impaired the activation of ATR-Chk1 signaling, and delayed cell-cycle re-entry and progression. Further investigation of the relationship between Pol κ and temozolomide revealed that Pol κ inactivation facilitated temozolomide-induced Rad17 ubiquitination and proteasomal degradation, subsequently silencing ATR-Chk1 signaling and leading to defective HR repair and the reversal of temozolomide resistance. Moreover, overexpression of Rad17 in Pol κ-depleted GBM cells restored HR efficiency, promoted the clearance of temozolomide-induced DNA breaks, and desensitized cells to the cytotoxic effects of temozolomide observed in the absence of Pol κ. Finally, we found that Pol κ overexpression correlated with poor prognosis in GBM patients undergoing temozolomide therapy. Collectively, our findings identify a potential mechanism by which GBM cells develop resistance to temozolomide and suggest that targeting the DNA damage tolerance pathway may be beneficial for overcoming resistance. Cancer Res; 76(8); 2340-53. ©2016 AACR.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/pathology , Cell Cycle Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Dacarbazine/analogs & derivatives , Glioblastoma/pathology , Signal Transduction , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Brain Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Dacarbazine/pharmacology , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Heterografts , Humans , Mice , Temozolomide
11.
Brain ; 138(Pt 12): 3654-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26450587

ABSTRACT

Resistance to temozolomide poses a major clinical challenge in glioblastoma multiforme treatment, and the mechanisms underlying the development of temozolomide resistance remain poorly understood. Enhanced DNA repair and mutagenesis can allow tumour cells to survive, contributing to resistance and tumour recurrence. Here, using recurrent temozolomide-refractory glioblastoma specimens, temozolomide-resistant cells, and resistant-xenograft models, we report that loss of miR-29c via c-Myc drives the acquisition of temozolomide resistance through enhancement of REV3L-mediated DNA repair and mutagenesis in glioblastoma. Importantly, disruption of c-Myc/miR-29c/REV3L signalling may have dual anticancer effects, sensitizing the resistant tumours to therapy as well as preventing the emergence of acquired temozolomide resistance. Our findings suggest a rationale for targeting the c-Myc/miR-29c/REV3L signalling pathway as a promising therapeutic approach for glioblastoma, even in recurrent, treatment-refractory settings.


Subject(s)
DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Dacarbazine/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Signal Transduction/genetics , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...