Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Sensors (Basel) ; 18(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231467

ABSTRACT

Formaldehyde is one of the most dangerous air pollutants, which can cause sick building syndrome. Thus, it is very crucial to precisely determine formaldehyde with a low cost and simple operation. In this paper, a smartphone-based microfluidic colorimetric sensor is devised for gaseous formaldehyde determination with high sensitivity and selectivity. Specifically, a novel microfluidic chip is proposed based on the 4-aminohydrazine-5-mercapto-1,2,4-triazole (AHMT) method to determine formaldehyde; the chip consists of two reagent reservoirs, one reaction reservoir and a mixing column. In this design to prevent the fluid from flowing out while letting the gas molecule in, a hydrophobic porous poly tetra fluoroethylene (PTFE) membrane is put on the top of the reaction reservoir. Using the microfluidic chip sensor, a smartphone-based formaldehyde determination system is developed, which makes the measuring process automated and simple. As per the experiment results, the limit-of-detection (LOD) of the system is as low as 0.01 ppm, which is much lower than the maximum exposure concentration (0.08 ppm) recommended by the World Health Organization (WHO). Moreover, the sensor is hardly affected by acetaldehyde, volatile organic compounds (VOCs) or acidic-alkaline, which shows great selectivity. Finally, the performance of the proposed sensor is verified by using it for the determination of formaldehyde in a newly decorated house.

2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 29(4): 252-4, 2005 Jul.
Article in Chinese | MEDLINE | ID: mdl-16268349

ABSTRACT

A temperature control system for quantitive polymerase chain reaction (PCR) is presented in the paper with both software and hardware configuration. The performance of the control system has been improved by optimizing the software and hardware design according to the system's properties. The control system has been proven to have a good repeatability and reliability as well as high control precision.


Subject(s)
Microcomputers , Polymerase Chain Reaction/instrumentation , Software , Temperature , Equipment Design , Software Design
SELECTION OF CITATIONS
SEARCH DETAIL
...