Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(16): e2307797, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032156

ABSTRACT

The rational design of inexpensive metal electrocatalysts with exciting catalytic activity for overall water splitting (OWS) remains a significant challenge. Heterostructures of NiFe layered double hydroxides (NiFe-LDHs) with abundant oxygen defects and tunable electronic properties have garnered considerable attention. Here, a self-supporting heterostructured catalyst (named MoO3/NiFe-NF) is synthesized via a hydrothermal method to grow NiFe-LDH with oxygen vacancies (OV) in situ on inexpensive nickel foam (NF). Subsequently, MoO3 is anchored and grown on the surface of NiFe-LDH by electrodeposition. The obtained catalysts achieved outstanding oxygen/hydrogen evolution reaction (OER/HER, 212 mV/85 mV@10 mA cm-2) performance in 1 m KOH. Additionally, when MoO3/NiFe-NF is utilized as the cathode and anode in OWS, a current density of 10 mA cm-2 can be obtained as an ultralow battery voltage of 1.43 V, a significantly lower value compared to the commercial electrolyzer incorporating Pt/C and IrO2 electrode materials. Finally, density functional theory (DFT) calculations and advanced spectroscopy technology are conducted to reveal the effects of heterojunctions and OV on the internal electronic structure of the electrical catalysts. Mainly, the present study provides a novel tactic for the rational design of remarkable, low-cost NiFe-LDH electrocatalysts with heterostructures for OWS.

2.
Environ Res ; 202: 111605, 2021 11.
Article in English | MEDLINE | ID: mdl-34197819

ABSTRACT

In this study, a novel electrochemical sensor for simultaneous detection of Pb(II) and Cu(II) was constructed by using Zn/Ni-ZIF-8/XC-72/Nafion hybrid material as electrode surface modifier. XRD, FT-IR, XPS and SEM were used to study the crystal structure, functional groups, element types and morphologies of the prepared materials. The electrochemical performance of the Zn/Ni-ZIF-8/XC-72/Nafion/GCE sensor were investigated by CV, EIS and DPV. In addition, the effects of various conditions including pH, the type of buffer and the ratio of Zn/Ni-ZIF-8 to XC-72 were also explored for the determination of Pb(II) and Cu(II). Under the optimum conditions, the constructed sensor exhibited outstanding linear response of Pb(II) (0.794-39.6 ppm) and Cu(II) (0.397-19.9 ppm) with detection limits of 0.0150 and 0.0096 ppm, respectively. Finally, the fabricated sensor was further used to detect Pb(II) and Cu(II) in real samples, and the satisfactory recovery was obtained.


Subject(s)
Lead , Zinc , Electrodes , Fluorocarbon Polymers , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...