Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 45(5): 2727-2740, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629536

ABSTRACT

Lake wetlands are extremely important and special ecosystems, which are important for regional water resource storage, environmental protection, and biodiversity maintenance. Sediment bacteria are an important component of lake ecosystems and are a major driver of biogeochemical cycling in lakes. In order to investigate the community structure of bacteria in typical lake sediments in Yinchuan City and their influencing factors, three typical lakes in Yinchuan City (Yuehai Lake, Mingcui Lake, and Xiniu Lake) were selected for the study and surface sediments were collected in January, April, July, and October 2021. The composition of the sediment bacterial community was examined using 16S rDNA high-throughput sequencing technology, and the response relationships between them and heavy metals were explored. The results showed that the ecological hazard coefficient for heavy metals in the sediments of three typical lakes in Yinchuan City was far less than 40, and the ecological hazard index was far less than 150, all of which indicated a minor ecological hazard. There were no significant differences in bacterial community diversity among the three lakes, but there were significant variations in diversity among the lakes in different seasons and significant differences in community composition. The dominant phyla (top three in terms of relative abundance) in Yuehai Lake, Mingcui Lake, and Xiniu Lake were Proteobacteria, Bacteroidetes, and Chloroflexi. The dominant lower orders were Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The main divergent species that occurred at the phylum level in typical lakes in Yinchuan were Proteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes, Actinobacteria, and Acidobacteria. The sediment bacterial community structure of Yuehai Lake was significantly correlated with Cu, Fe, Mn, Zn, As, and Pb; the sediment bacterial community structure of Lake Mingcui was significantly correlated with Fe, Pb, and Cr; and the sediment bacterial community structure of Xiniu Lake was not significantly correlated with heavy metals. The types and contents of sediment heavy metals had a significant effect on the bacterial community structure of sediments in Yinchuan Yuehai Lake and Mingcui Lake and were important environmental factors that caused changes in the bacterial community structure of lake sediments.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Lakes/chemistry , Ecosystem , Lead , Metals, Heavy/analysis , Bacteria/genetics , Proteobacteria/genetics , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring
2.
Microorganisms ; 11(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838461

ABSTRACT

The Yellow River is a valuable resource in the Ningxia Hui Autonomous Region and plays a vital role in local human activities and biodiversity. Bacteria are a crucial component of river ecosystems, but the driving factors and assembly mechanisms of bacterial community structure in this region remain unclear. Herein, we documented the bacterial community composition, determinants, co-occurrence pattern, and assembly mechanism for surface water and sediment. In comparison to sediment, the bacterioplankton community showed significant seasonal variation, as well as less diversity and abundance. The network topology parameters indicated that the sediment bacterial network was more stable than water, but the bacterioplankton network had higher connectivity. In this lotic ecosystem, CODMn, Chl a, and pH affected the structure of the bacterioplankton community, while TP was the primary factor influencing the structure of the sediment bacterial community. The combined results of the neutral community model and the phylogenetic null model indicate that Bacterial communities in both habitats were mainly affected by stochastic processes, with ecological processes dominated by ecological drift for bacterioplankton and dispersal limitation for sediment bacteria. These results provide essential insights into future research on microbial ecology, environmental monitoring, and classified management in the Ningxia section of the Yellow River.

3.
Article in English | MEDLINE | ID: mdl-36613177

ABSTRACT

Research on the spatiotemporal evolution and trade-offs of ecosystem services (ESs) is important for optimizing the ecological security barrier system and promoting coordinated socio-economic development. Natural factors, e.g., climate change, and human factors, e.g., unreasonable land use, have impacted and damaged ecosystem structure and function, leading to challenges with ES trade-offs and the spatial identification of priority protected areas. Here, the spatiotemporal evolution characteristics of five ESs (water yield, nitrogen export, soil retention, carbon storage, and habitat quality) in Anhui Province, China, from 2000-2020 were analyzed based on the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. The trade-offs and spatial patterns among different ESs were explored using Pearson correlation and hotspot analyses; the dynamics of natural growth, cultivated land protection, and ecological protection scenarios for ESs in 2030 were simulated and analyzed by coupling InVEST with the patch-generating land use simulation (PLUS) model. The results reveal the following. (1) From 2000-2020, increases in water yield and soil retention occurred, with concurrent declines in the other services; the total nitrogen high-value area was mainly concentrated in the plain, with the other services' high-value areas mainly concentrated in the Dabieshan and Southern Anhui Mountains, with each ES showing similar spatial distributions across years. (2) The ESs were mainly synergistic, with trade-offs mainly between nitrogen export and other services. (3) Hotspot overlap between water yield and the other ESs was relatively low; no more than 6.53% of ecosystems per unit area provided five ESs simultaneously. (4) Other than water yield, the ecological protection scenario was more conducive to improving ecosystem functions. This study's results indicate inadequate synergy among ESs in Anhui Province; competition among land types must be further balanced in the future. This study provides a basic reference for implementing ecological projects and constructing ecological security patterns.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Soil , China , Economic Development
4.
Water Res ; 226: 119310, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36369683

ABSTRACT

Heavy metal(loid)s (HMs) have been consistently entering the food chain, imposing great harm on environment and public health. However, previous studies on the spatial dynamics and transport mechanism of HMs have been profoundly limited by the field sampling issues, such as the uneven observations of individual carriers and their spatial mismatch, especially over large-scale catchments with complex environment. In this study, a novel methodological framework for mapping HMs at catchment scale was proposed and applied, combining a species distribution model (SDM) with physical environment and human variables. Based on the field observations, we ecologicalized HMs in different carriers as different species. This enabled the proposed framework to model the 'enrichment area' of individual HMs in the geographic space (termed as the HM 'habitat') and identify their 'hotspots' (peak value points) within the catchment. Results showed the output maps of HM habitats from secondary carriers (soil, sediment, and wet deposition) well agreed with the influence of industry contaminants, hydraulic sorting, and precipitation washout process respectively, indicating the potential of SDM in modeling the spatial distributions of the HM. The derived maps of HMs from secondary carriers, along with the human and environmental variables were then input as explanatory variables in SDM to predict the spatial patterns of the final HM accumulation in river water, which was observed to have largely improved the prediction quality. These results confirmed the value of our framework to leverage SDMs from ecology perspective to study HM contamination transport at catchment scale, offering new insights not only to map the spatial HM habitats but also help locate the HM transport chains among different carriers.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil Pollutants/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Soil , China
5.
Article in English | MEDLINE | ID: mdl-36231526

ABSTRACT

The Taiyangshan Wetland, a valuable wetland resource in the arid zone of central Ningxia, is critical for flood storage and drought resistance, climate regulation, and biodiversity protection. Nevertheless, the community structure and diversity of bacterioplankton in the Taiyangshan Wetland remains unclear. High-throughput sequencing was used to analyze the differences in bacterioplankton structure and major determinants in the Taiyangshan Wetland from April to October 2020. The composition and diversity of the bacterioplankton community varied significantly in different sampling periods but showed negligible differences across lake regions. Meanwhile, the relative abundances of bacterioplankton Bacteroidetes, Actinobacteria, Firmicutes, Chloroflexi, Tenericutes, Epsilonbacteraeota, and Patescibacteria were significantly different in different sampling periods, while the relative abundances of Cyanobacteria in different lake regions were quite different. Network analysis revealed that the topological attributes of co-occurrence pattern networks of bacterioplankton were high, and bacterioplankton community compositions were complicated in the month of July. A mantel test revealed that the bacterioplankton community in the entire wetland was affected by water temperature, electrical conductivity, dissolved oxygen, salinity, total nitrogen, ammonia nitrogen, chemical oxygen demand, fluoride, and sulfate. The bacterioplankton community structure was affected by ten environmental parameters (e.g., water temperature, dissolved oxygen, salinity, and permanganate index) in April, while the bacterioplankton community was only related to 1~2 environmental parameters in July and October. The bacterioplankton community structure in Lake Region IV was related to seven environmental parameters, including dissolved oxygen, pH, total nitrogen, and chemical oxygen demand, whereas the bacterioplankton community structures in the other three lake regions were related to two environmental parameters. This study facilitates the understanding of the bacterioplankton community in wetlands in arid areas and provides references to the evaluation of aquatic ecological management of the Taiyangshan Wetland.


Subject(s)
Cyanobacteria , Wetlands , Ammonia/analysis , Aquatic Organisms , China , Ecosystem , Fluorides/analysis , Lakes/microbiology , Nitrogen/analysis , Oxygen/analysis , Sulfates/analysis , Water/analysis
6.
Sci Rep ; 11(1): 12672, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135441

ABSTRACT

Prymnesium parvum is an environmentally harmful algae and well known for its toxic effects to the fish culture. However, there is a dearth of studies on the growth behavior of P. parvum and information on how the availability of nutrients and environmental factors affect their growth rate. To address this knowledge gap, we used a uniform design approach to quantify the effects of major nutrients (N, P, Si and Fe) and environmental factors (water temperature, pH and salinity) on the biomass density of P. parvum. We also generated the growth model for P. parvum as affected by each of these nutrients and environmental factors to estimate optimum conditions of growth. Results showed that P. parvum can reach its maximum growth rate of 0.789, when the water temperature, pH and salinity is 18.11 °C, 8.39, and 1.23‰, respectively. Moreover, maximum growth rate (0.895-0.896) of P. parvum reached when the concentration of nitrogen, phosphorous, silicon and iron reach 3.41, 1.05, 0.69 and 0.53 mg/l, respectively. The order of the effects of the environmental factors impacting the biomass density of P. parvum was pH > salinity > water temperature, while the order of the effects of nutrients impacting the biomass density of P. parvum was nitrogen > phosphorous > iron > silicon. These findings may assist to implement control measures of the population of P. parvum where this harmful alga threatens aquaculture industry in the waterbodies such as Ningxia region in China.


Subject(s)
Haptophyta/growth & development , Aquaculture , Biomass , Fresh Water/chemistry , Iron , Microalgae/growth & development , Nitrogen , Nutrients , Pest Control , Phosphorus , Salinity
7.
Huan Jing Ke Xue ; 33(7): 2265-71, 2012 Jul.
Article in Chinese | MEDLINE | ID: mdl-23002600

ABSTRACT

Analysis approaches of correlation, multiple stepwise regression and canonical correspondence analysis were employed between phytoplankton and water environmental factors in ShaHu Lake based on the data from Apr. 2009 to Jan. 2010. The results showed that the correlation between phytoplankton density, phytoplankton biomass, chlorophyll-a and water temperature (WT), total nitrogen (TN), total phosphorus (TP), potassium permanganate index,5 days biochemical oxygen demand (BOD5) was positive, and phytoplankton density, phytoplankton biomass, chlorophyll-a and Secchi-depth (SD) was negatively correlated. Followed by the importance of environmental factors which affected phytoplankton density in Shahu Lake ranged as follows: WT, potassium permanganate index, SD, BOD5, TP, TN. Those affected phytoplankton biomass ranged as follows: WT,TP, potassium permanganate index,SD,TN. Those affected on chlorophyll-a ranged as follows: potassium permanganate index, WT, SD, TP, TN, BOD5. CCA result showed that 16 species of phytoplankton were divided into 3 groups which had the obvious seasonal distribution characteristics in Shahu Lake. SD, potassium permanganate index,WT, TN, TP were the main water environmental factors correlated with the distribution of phytoplankton community of Shahu Lake.


Subject(s)
Lakes , Phytoplankton/growth & development , Temperature , Water Pollutants, Chemical/analysis , China , Chlorophyll/analysis , Chlorophyll A , Eutrophication , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...