Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170455, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286288

ABSTRACT

Microplastics (100 nm-5 mm) and nanoplastics (<100 nm) collectively referred to as micro(nano)plastics (MNPs), which are emerging pollutants all over the world. Environmental differences affect its distribution. The content of MNPs differs between urban and rural environments, according to previous studies. To understand the actual situation of human exposure to MNPs in various environments, this study collected 12 urine samples from volunteers in urban and rural regions of Chongqing and used pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and laser direct infrared spectroscopy (LDIR) to detect and analyze MNPs in urine. With an average abundance of 1.50 (2.31) mg/kg, MNPs were found in 9 samples by Py-GC/MS. Polyethylene (PE), polyvinyl chloride (PVC) and polyamide 66 (PA66), three different types of MNPs were found, with PE content being the highest among them. By using LDIR, MNPs were found in 7 samples, with an average abundance of 15.17 (23.13) particles/kg. Five different types of MNPs were found, with acrylates (ACR) being the main type, followed by polymethylmethacrylate (PMMA), polyurethane (PU), polypropylene (PP), polyethylene terephthalate (PET). The findings demonstrated that urban region had much greater levels and more types of MNPs in human urine than rural. Additionally, regular contact with plastic toys and the use of personal care products are linked to the presence of MNPs. The influence of environmental factors on the actual exposure of the human body to MNPs was preliminary explored in this study, and two different methods were used for the first time to simultaneously detect and analyze MNPs in human urine. This allowed for the feasibility of comprehensively and effectively quantitatively analyzing the actual exposure of the human body to MNPs, and also provided the theoretical foundation for further research on the harm of MNPs to human health in different environments.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Plastics , Urine , Polyethylene , Acrylates
2.
Chemosphere ; 336: 139138, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285987

ABSTRACT

Microplastics (100nm-5 mm) and nanoplastics (1-100 nm) are collectively referred to as micro(nano)plastics (MNPs), which are refractory to degradation, easy to migration, small in size, strong in adsorption, and can widely present in human living environment. A number of studies have confirmed that MNPs can be exposed to the human body through a variety of routes, and can penetrate various barriers to enter the reproductive system, suggesting that MNPs may pose potential harm to human reproductive health. Current studies most were limited to phenotypic studies and their subjects were basically lower marine organisms and mammals. Therefore, in order to provide theoretical base for further exploring the effects of MNPs on the human reproductive system, this paper searched the relevant literature at home and abroad, mainly analyzed rodent experiments, and concluded that the main exposure routes of MNPs are dietary intake, air inhalation, skin contact and medical plastics. After entering the reproductive system, MNPs produce reproductive toxicity mainly through oxidative stress, inflammation, metabolic disorders, cytotoxicity and other mechanisms. More work is required to comprehensively identify the exposure routes, improve the detection methods to evaluate the effective exposure and deeply study the specific mechanisms of toxic effects, withing the aim of conducting relevant studies at the population level in the next step.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Humans , Genitalia , Microplastics , Adsorption , Inflammation , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...