Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34849567

ABSTRACT

MOTIVATION: Understanding chemical-gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. RESULTS: We developed BioNet, a deep biological networkmodel with a graph encoder-decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.


Subject(s)
Computational Biology , Computer Simulation , Models, Biological , Neural Networks, Computer
2.
Math Biosci Eng ; 17(4): 2825-2841, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32987500

ABSTRACT

Clinical event detection (CED) is a hot topic and essential task in medical artificial intelligence, which has attracted the attention from academia and industry over the recent years. However, most studies focus on English clinical narratives. Owing to the limitation of annotated Chinese medical corpus, there is a lack of relevant research about Chinese clinical narratives. The existing methods ignore the importance of contextual information in semantic understanding. Therefore, it is urgent to research multilingual clinical event detection. In this paper, we present a novel encoder-decoder structure based on pre-trained language model for Chinese CED task, which integrates contextual representations into Chinese character embeddings to assist model in semantic understanding. Compared with existing methods, our proposed strategy can help model harvest a language inferential skill. Besides, we introduce the punitive weight to adjust the proportion of loss on each category for coping with class imbalance problem. To evaluate the effectiveness of our proposed model, we conduct a range of experiments on test set of our manually annotated corpus. We compare overall performance of our proposed model with baseline models on our manually annotated corpus. Experimental results demonstrate that our proposed model achieves the best precision of 83.73%, recall of 86.56% and F1-score of 85.12%. Moreover, we also evaluate the performance of our proposed model with baseline models on minority category samples. We discover that our proposed model obtains a significant increase on minority category samples.


Subject(s)
Artificial Intelligence , Language , China , Electronic Health Records , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...