Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 3(1): 44, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991216

ABSTRACT

BACKGROUND: The introduction of deep learning in both imaging and genomics has significantly advanced the analysis of biomedical data. For complex diseases such as cancer, different data modalities may reveal different disease characteristics, and the integration of imaging with genomic data has the potential to unravel additional information than when using these data sources in isolation. Here, we propose a DL framework that combines these two modalities with the aim to predict brain tumor prognosis. METHODS: Using two separate glioma cohorts of 783 adults and 305 pediatric patients we developed a DL framework that can fuse histopathology images with gene expression profiles. Three strategies for data fusion were implemented and compared: early, late, and joint fusion. Additional validation of the adult glioma models was done on an independent cohort of 97 adult patients. RESULTS: Here we show that the developed multimodal data models achieve better prediction results compared to the single data models, but also lead to the identification of more relevant biological pathways. When testing our adult models on a third brain tumor dataset, we show our multimodal framework is able to generalize and performs better on new data from different cohorts. Leveraging the concept of transfer learning, we demonstrate how our pediatric multimodal models can be used to predict prognosis for two more rare (less available samples) pediatric brain tumors. CONCLUSIONS: Our study illustrates that a multimodal data fusion approach can be successfully implemented and customized to model clinical outcome of adult and pediatric brain tumors.


An increasing amount of complex patient data is generated when treating patients with cancer, including histopathology data (where the appearance of a tumor is examined under a microscope) and molecular data (such as analysis of a tumor's genetic material). Computational methods to integrate these data types might help us to predict outcomes in patients with cancer. Here, we propose a deep learning method which involves computer software learning from patterns in the data, to combine histopathology and molecular data to predict outcomes in patients with brain cancers. Using three cohorts of patients, we show that our method combining the different datasets performs better than models using one data type. Methods like ours might help clinicians to better inform patients about their prognosis and make decisions about their care.

2.
Nat Commun ; 11(1): 6350, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311484

ABSTRACT

RNA sequencing has emerged as a promising approach in cancer prognosis as sequencing data becomes more easily and affordably accessible. However, it remains challenging to build good predictive models especially when the sample size is limited and the number of features is high, which is a common situation in biomedical settings. To address these limitations, we propose a meta-learning framework based on neural networks for survival analysis and evaluate it in a genomic cancer research setting. We demonstrate that, compared to regular transfer-learning, meta-learning is a significantly more effective paradigm to leverage high-dimensional data that is relevant but not directly related to the problem of interest. Specifically, meta-learning explicitly constructs a model, from abundant data of relevant tasks, to learn a new task with few samples effectively. For the application of predicting cancer survival outcome, we also show that the meta-learning framework with a few samples is able to achieve competitive performance with learning from scratch with a significantly larger number of samples. Finally, we demonstrate that the meta-learning model implicitly prioritizes genes based on their contribution to survival prediction and allows us to identify important pathways in cancer.


Subject(s)
Genomics/methods , Machine Learning , Neoplasms/genetics , Algorithms , Computational Biology , Humans , Neural Networks, Computer , Prognosis , Survival Analysis
3.
Gigascience ; 9(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32761097

ABSTRACT

BACKGROUND: As missing values are frequently present in genomic data, practical methods to handle missing data are necessary for downstream analyses that require complete data sets. State-of-the-art imputation techniques, including methods based on singular value decomposition and K-nearest neighbors, can be computationally expensive for large data sets and it is difficult to modify these algorithms to handle certain cases not missing at random. RESULTS: In this work, we use a deep-learning framework based on the variational auto-encoder (VAE) for genomic missing value imputation and demonstrate its effectiveness in transcriptome and methylome data analysis. We show that in the vast majority of our testing scenarios, VAE achieves similar or better performances than the most widely used imputation standards, while having a computational advantage at evaluation time. When dealing with data missing not at random (e.g., few values are missing), we develop simple yet effective methodologies to leverage the prior knowledge about missing data. Furthermore, we investigate the effect of varying latent space regularization strength in VAE on the imputation performances and, in this context, show why VAE has a better imputation capacity compared to a regular deterministic auto-encoder. CONCLUSIONS: We describe a deep learning imputation framework for transcriptome and methylome data using a VAE and show that it can be a preferable alternative to traditional methods for data imputation, especially in the setting of large-scale data and certain missing-not-at-random scenarios.


Subject(s)
Algorithms , Genomics , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...