Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1415167, 2024.
Article in English | MEDLINE | ID: mdl-38979127

ABSTRACT

Background: The clinical impact of washed microbiota transplantation (WMT) from healthy donors in sleep disorder (SD) patients is unclear. This study aimed to investigate the effect of WMT in SD patients. Methods: The clinical data were collected from patients with different indications receiving 1-3 courses of WMT, divided into two groups by 7 points of PSQI scale. The score of PQSI and SF-36 scale was used to assess the improvement in sleep quality and life quality among patients with sleep disorders following WMT. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of patients with sleep disorders before and after WMT. Results: WMT significantly improved sleep quality in patients with sleep disorder in the short and medium term. WMT significantly improved sleep latency, sleep time and total score in the short term. WMT significantly improved sleep quality and total score in the medium term. In terms of sleep quality and sleep latency, the improvement value also increased with the increase of treatment course, and the improvement effect of multiple treatment course was better than that of single and double treatment course. In the total score, the improvement effect of double and multiple treatment was better than that of single treatment. WMT also improved quality of life in the sleep disorder group. WMT significantly improved general health, vitality, social function and mental health in the short term. WMT significantly improved role-physical, general health, vitality, and mental health in the medium term. WMT regulated the disturbed gut microbiota in patients with sleep disorders. In the normal sleep group, WMT had no effect on the decline of sleep quality in the short, medium and long term, and had an improving effect on the quality of life. Conclusion: WMT could significantly improve sleep quality and life quality in patients with sleep disorders with no adverse events. The improvement in sleep quality resulting from WMT could lead to an overall enhancement in life quality. WMT could be a potentially effective treatment for patients with sleep disorders by regulating the gut microbiota.

2.
ACS Chem Neurosci ; 15(11): 2112-2120, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38776461

ABSTRACT

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.


Subject(s)
Positron-Emission Tomography , Receptors, Purinergic P2X7 , Tauopathies , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Brain/metabolism , Brain/diagnostic imaging , Disease Models, Animal , Fluorine Radioisotopes , Mice, Transgenic , Positron-Emission Tomography/methods , Receptors, Purinergic P2X7/metabolism , tau Proteins/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism
3.
J Pharm Biomed Anal ; 246: 116221, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759324

ABSTRACT

Lumateperone is a novel agent approved by FDA for treatment of schizophrenia in adults. To elucidate the species differences in the of biotransformation of lumateperone and its pharmacokinetic (PK) characteristics in rats, the metabolite identification of lumateperone was carried out in rat, dog and human liver microsomes, and rat plasma after oral administration using UPLC-Q Exactive Orbitrap high-resolution mass spectrometry HRMS. Furtherly, the PK characteristics of lumateperone and its N-demethylated metabolite (M3) in rat plasma were investigated using a validated LC-MS/MS method following intravenous and oral administration. Fourteen phase I metabolites were found in liver microsomes and ten of them were observed in rat plasma. N-demethylation, carbonylation, dehydrogenation, and piperazine ring cleavage were main metabolic pathway of lumateperone. No unique metabolites were formed in human liver microsomes. After rapid absorption in rats, lumateperone was quickly metabolized and eliminated with bioavailability of less than 5%. The exposure level of M3 was about 1.5-fold higher than that of lumateperone in rat plasma. Lumatperone underwent extensive metabolism and was absorbed rapidly in rats. Metabolite M3 had equivalent or slightly higher exposure levels than lumateperone. This study provides essential PK information to facilitate further pharmacodynamic researches of lumateperone.


Subject(s)
Microsomes, Liver , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods , Dogs , Rats , Humans , Male , Chromatography, High Pressure Liquid/methods , Administration, Oral , Biological Availability , Chromatography, Liquid/methods , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/blood , Antipsychotic Agents/administration & dosage , Biotransformation , Piperazines/pharmacokinetics , Piperazines/blood , Liquid Chromatography-Mass Spectrometry
4.
Article in English | MEDLINE | ID: mdl-38815356

ABSTRACT

Many pregnant women experience sleep disorders, and amino acid levels could play a crucial role in affecting maternal sleep. To explore this potential relationship, an accurate and effective UHPLC-MS/MS method has been developed to monitor 18 amino acids in the plasma samples of pregnant women. This method aims to assess how plasma amino acid levels might be linked to sleep disorders during pregnancy. Plasma samples were precipitated with acetonitrile containing 0.2% formic acid. We used 5% seralbumin as the surrogate matrix to establish quantitative curves for amino acid determination in human plasma. The method was validated in both the surrogate matrix and human plasma. The optimized UHPLC-MS/MS method was validated, showing that that the analytes had comparable recovery and negligible matrix effects in both 5% seralbumin and human plasma. The linearity, lower limit of quantification, precision, accuracy, and stability all met the acceptance criteria. The validated method was successfully applied to determination of the plasma levels of 18 amino acids in pregnant women with or without sleep disorders, indicating that alanine, lysine, tryptophan, glutamic acid, and phenylalanine levels had significant changes which may be related to sleep disorders during early pregnancy. An accurate, reliable, and efficient UHPLC-MS/MS method was successfully developed and support to find the specific amino acids as potential biomarkers for sleep disorders in pregnant women.


Subject(s)
Amino Acids , Sleep Wake Disorders , Tandem Mass Spectrometry , Humans , Female , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Amino Acids/blood , Pregnancy , Reproducibility of Results , Sleep Wake Disorders/blood , Linear Models , Adult , Limit of Detection , Pregnancy Complications/blood
6.
J Environ Manage ; 358: 120817, 2024 May.
Article in English | MEDLINE | ID: mdl-38593740

ABSTRACT

Spartina alterniflora invasion is considered a critical event affecting sediment phosphorus (P) availability and stock. However, P retention and microbial phosphate solubilization in the sediments invaded with or without S. alterniflora have not been fully investigated. In this study, a sequential fractionation method and high-throughput sequencing were used to analyze P transformation and the underlying microbial mechanisms in the sediments of no plant (NP) zone, transition (T) zone, and plant (P) zone. Results showed that except for organic phosphate (OP), total phosphate (TP), inorganic phosphate (IP), and available phosphate (AP) all followed a significant decrease trend from the NP site to the T site, and to the P site. The vertical decrease of TP, IP, and AP was also observed with an increase in soil depth. Among the six IP fractions, Fe-P, Oc-P, and Ca10-P were the predominant forms, while the presence of S. alterniflora resulted in an obvious P depletion except for Ca8-P and Al-P. Although S. alterniflora invasion did not significantly alter the alpha diversity of phosphate-solubilizing bacteria (PSB) harboring phoD gene, several PSB belonging to p_Proteobacteria, p_Planctomycetes, and p_Cyanobacteriota showed close correlations with P speciation and IP fractions. Further correlation analysis revealed that the reduced soil pH, soil TN and soil EC, and the increased soil TOC mediated by the invasion of S. alterniflora also significantly correlated to these PSB. Overall, this study elucidates the linkage between PSB and P speciation and provides new insights into understanding P retention and microbial P transformation in the coastal sediment invaded by S. alterniflora.


Subject(s)
Phosphates , Phosphorus , Poaceae , Wetlands , China , Estuaries , Geologic Sediments/microbiology
7.
ACS Omega ; 9(15): 17423-17431, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645324

ABSTRACT

As recurrent and metastatic nasopharyngeal carcinoma (NPC) is the most common cause of death among patients with NPC, there is an urgent clinical need for the development of precision diagnosis to guide personalized treatment. Recent emerging evidence substantiates the increased expression of transferrin receptor 1 (also known as cluster of differentiation 71, CD71) within tumor tissues and the inherent targeting capability of natural heavy-chain ferritin (HFn) toward CD71. This study aimed to synthesize and assess a radiotracer ([64Cu]Cu-NOTA-HFn) designed to target CD71 for positron emission tomography (PET) imaging in an NPC tumor-bearing mouse model. The entire radiolabeling process of [64Cu]Cu-NOTA-HFn was completed within 15 min with high yield (>98.5%) and high molar activity (72.96 ± 21.33 GBq/µmol). The in vitro solubility and stability experiments indicated that [64Cu]Cu-NOTA-HFn had a high water solubility (log P = -2.42 ± 0.52, n = 6) and good stability in phosphate-buffered saline (PBS) for up to 48 h. The cell saturation binding assay indicated that [64Cu]Cu-NOTA-HFn had a nanomolar affinity (Kd = 10.9 ± 6.1 nM) for CD71-overexpressing C666-1 cells. To test the target engagement in vivo, prolonged-time PET imaging was performed at 1, 6, 12, 24, and 36 h postinjection (p.i.) of [64Cu]Cu-NOTA-HFn to C666-1 NPC tumor-bearing mice. The C666-1 tumors could be visualized by [64Cu]Cu-NOTA-HFn and blocked by nonradiolabeled HFn. PET imaging quantitative analysis demonstrated that the uptake of [64Cu]Cu-NOTA-HFn in C666-1 tumors peaked at 6 h p.i. and the best radioactive tumor-to-muscle ratio was 10.53 ± 3.11 (n = 3). Ex vivo biodistribution assay at 6 h p.i. showed that the tumor uptakes were 1.43 ± 0.23%ID/g in the nonblock group and 0.92 ± 0.2%ID/g in the block group (n = 3, p < 0.05). Immunohistochemistry and immunofluorescence staining confirmed positive expression of CD71 and the uptake of HFn in C666-1 tumor tissues. In conclusion, our experiments demonstrated that [64Cu]Cu-NOTA-HFn possesses a very high target engagement for CD71-positive NPC tumors and provided a fundamental basis for further clinical translation.

8.
Mol Genet Genomics ; 299(1): 36, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492113

ABSTRACT

Previous studies have observed relationships between pancreatitis and gut microbiota; however, specific changes in gut microbiota abundance and underlying mechanisms in pancreatitis remain unknown. Metabolites are important for gut microbiota to fulfil their biological functions, and changes in the metabolic and immune environments are closely linked to changes in microbiota abundance. We aimed to clarify the mechanisms of gut-pancreas interactions and explore the possible role of metabolites and the immune system. To this end, we conducted two-sample Mendelian randomisation (MR) analysis to evaluate the casual links between four different types of pancreatitis and gut microbiota, metabolites, and inflammatory cytokines. A two-step MR analysis was conducted to further evaluate the probable mediating pathways involving metabolites and inflammatory cytokines in the causal relationship between pancreatitis and gut microbiota. In total, six potential mediators were identified in the causal relationship between pancreatitis and gut microbiota. Nineteen species of gut microbiota and seven inflammatory cytokines were genetically associated with the four types of pancreatitis. Metabolites involved in glucose and amino acid metabolisms were genetically associated with chronic pancreatitis, and those involved in lipid metabolism were genetically associated with acute pancreatitis. Our study identified alterations in the gut microbiota, metabolites, and inflammatory cytokines in pancreatitis at the genetic level and found six potential mediators of the pancreas-gut axis, which may provide insights into the precise diagnosis of pancreatitis and treatment interventions for gut microbiota to prevent the exacerbation of pancreatitis. Future studies could elucidate the mechanism underlying the association between pancreatitis and the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Pancreatitis , Humans , Acute Disease , Cytokines/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Pancreatitis/genetics , Mendelian Randomization Analysis
9.
Schizophr Res ; 264: 122-129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128343

ABSTRACT

BACKGROUND: Several studies have indicated that the plasma concentration of risperidone increases 3-5-fold during the acute-phase reaction (APR) of inflammation or infection. Psychiatric symptoms are present or deteriorate when the dose is lowered; thus, the complex effects of inflammation on the pharmacokinetics of risperidone need to be examined. METHODS: We established a APR model in rabbits induced by lipopolysaccharide (LPS) and studied the effect of APR on pharmacokinetics, distribution and disposition of risperidone in vivo and in vitro. RESULTS: Following intramuscular administration, the plasma exposures for risperidone and its active metabolite (9-hydroxyrisperidone) were increased approximately 6-fold on day 2 of inflammation. The exposure values did not change between day 2 and 5 of inflammation, nor did the metabolite-to-parent ratio before and during inflammation. Following oral administration, the increase of risperidone exposure was twice as high as that following intramuscular administration during APR. However, the concentration of risperidone and 9-hydroxyrisperidone in brain tissue was similar between the inflammatory and control groups. Moreover, the plasma protein binding (PPB) of risperidone and 9-hydroxyrisperidone associated with inflammation were all increased to >99 %. In addition, risperidone and 9-hydroxyrisperidone were not substrates of the key transporters, OATP1B3, OCT2, OAT3, MATE-1, or MATE-2 K. The expression of progesterone X receptor and P-glycoprotein was inhibited by LPS. CONCLUSION: During APR, reduced expression of P-glycoprotein and increased PPB were responsible for increased exposure in plasma, while maintaining stable concentrations in the brain, and risperidone does not need to be dose-adjusted so as to achieve psychopharmacological outcomes.


Subject(s)
Antipsychotic Agents , Risperidone , Animals , Rabbits , Paliperidone Palmitate , Isoxazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Acute-Phase Reaction/chemically induced , Lipopolysaccharides , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B
11.
Aging (Albany NY) ; 15(22): 13312-13328, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38015710

ABSTRACT

BACKGROUND: Epithelial-mesenchymal transition (EMT) and aberrant energy metabolism are pivotal biological processes in tumor progression, significantly impacting tumor prognosis. However, the relationship between EMT, energy metabolism, and the immune microenvironment in bladder urothelial carcinoma (BLCA) remains inadequately understood. METHODS: Bladder cancer samples from The Cancer Genome Atlas were categorized into two groups via clustering analysis to elucidate disparities in expression, prognostic significance, and immune infiltration of genes associated with EMT and energy metabolism between these groups. Key genes associated with EMT and energy metabolism in BLCA were identified through Cox multifactorial regression analysis, immune infiltration analysis, etc. Subsequently, their prognostic significance in BLCA was validated. RESULTS: Cluster analysis revealed significant differences in the expression of genes associated with EMT and energy metabolism between the two groups. Group 2 exhibited significantly improved overall survival and progression-free survival compared to Group 1. Chondroitin sulfate proteoglycan 4 (CSPG4) emerged as the most critical gene associated with EMT, energy metabolism, prognosis, and immune infiltration in BLCA. Immunohistochemical assays demonstrated differential expression of CSPG4 in bladder tumors and normal bladder tissues, with high CSPG4 expression correlating with a poorer BLCA prognosis. Furthermore, CSPG4 exhibited an association with the immune checkpoint molecule programmed death-1 (PD1) in BLCA. CONCLUSIONS: EMT and energy metabolism exert pivotal influences on the immune microenvironment in BLCA. CSPG4 holds promise as a prognostic biomarker for patients with BLCA, offering valuable insights into potential immunotherapeutic strategies for this patient population.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder , Epithelial-Mesenchymal Transition/genetics , Prognosis , Energy Metabolism/genetics , Tumor Microenvironment/genetics
12.
Eur J Nucl Med Mol Imaging ; 50(12): 3589-3601, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37466648

ABSTRACT

PURPOSE: Ankylosing spondylitis (AS) is a chronic inflammatory disease of the axial spine; however, the quantitative detection of inflammation in AS remains a challenge in clinical settings. We aimed to investigate the feasibility of using a specific P2X7R-targeting 18F-labeled tracer [18F]GSK1482160 for positron emission tomography (PET) imaging and the quantification of AS. METHODS: The radioligand [18F]GSK1482160 was obtained based on nucleophilic aliphatic substitution. Dynamic [18F]GSK1482160 and [18F]FDG micro-PET/CT imaging were performed on AS mice (n = 8) and age-matched controls (n = 8). Tracer kinetics modeling was performed using Logan's graphical arterial input function analysis to quantify the in vivo expression of P2X7R. The post-PET tissues were collected for hematoxylin-eosin (H&E), immunohistochemical (IHC), and immunofluorescence (IF) staining. RESULTS: [18F]GSK1482160 PET/CT imaging revealed that the specific binding in the ankle joint and sacroiliac joint (SIJ) of the AS at 8 weeks group (BPNDankle-AS-8W (non-displaceable binding potential of the ankle) 3.931 ± 0.74; BPND SIJ-AS-8W (BPBD of the SIJ) 4.225 ± 0.84) were significantly higher than the controls at 8 weeks group (BPNDankle-Ctr-8W 0.325 ± 0.15, BPNDSJJ-Ctr-8W 0.319 ± 0.17) respectively, and the AS at 14 weeks group (BPNDankle-AS-14W 12.212 ± 2.25; BPNDSJJ-AS-14W 13.389 ± 3.60) were significantly higher than the controls at 14 weeks group (BPNDankle-Ctr-14W 0.204 ± 0.16, BPNDSJJ-Ctr-14W 0.655 ± 0.35) respectively. The four groups had no significant difference in the [18F]FDG uptake of ankle and SIJ. IHC and IF staining revealed that the overexpression of P2X7R was colocalized with activated macrophages from the ankle synovium and spinal endplate in mice with AS, indicating that quantification of P2X7R may contribute to the understanding of the pathogenesis of inflammation in human AS. CONCLUSION: This study developed a novel P2X7R-targeting PET tracer [18F]GSK1482160 to detect the expression of P2X7R in AS mouse models and provided powerful non-invasive PET imaging and quantification for AS.

13.
Aging (Albany NY) ; 15(15): 7408-7423, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37433010

ABSTRACT

Patients with advanced bladder cancer gradually become less sensitive to chemotherapeutic agents, leading to tumor recurrence. Initiating the senescence program in solid tumors may be an important means of improving short-term drug sensitivity. The important role of c-Myc in bladder cancer cell senescence was determined using bioinformatics methods. The response to cisplatin chemotherapy in bladder cancer sample was analyzed according to the Genomics of Drug Sensitivity in Cancer database. Cell Counting Kit-8 assay, clone formation assay, and senescence-associated ß-galactosidase staining were used to assess bladder cancer cell growth, senescence, and sensitivity to cisplatin, respectively. Western blot and immunoprecipitation were performed to understand the regulation of p21 by c-Myc/HSP90B1. Bioinformatic analysis showed that c-Myc, a cellular senescence gene, was significantly associated with bladder cancer prognosis and sensitivity to cisplatin chemotherapy. c-Myc and HSP90B1 expression were highly correlated in bladder cancer. Reducing the level of c-Myc significantly inhibited bladder cancer cell proliferation, promoted cellular senescence, and enhanced cisplatin chemosensitivity. Immunoprecipitation assays confirmed that HSP90B1 interacted with c-Myc. Western blot analysis showed that reducing the level of HSP90B1 could redeem the p21 overexpression caused by c-Myc overexpression. Further studies showed that reducing HSP90B1 expression could alleviate the rapid growth and accelerate cellular senescence of bladder cancer cells caused by c-Myc overexpression, and that reducing HSP90B1 levels could also improve cisplatin sensitivity in bladder cancer cells. HSP90B1/c-Myc interaction regulates the p21 signaling pathway, which affects cisplatin chemosensitivity by modulating bladder cancer cell senescence.


Subject(s)
Antineoplastic Agents , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Recurrence, Local/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Cell Proliferation/genetics , Cellular Senescence/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
14.
Methods Mol Biol ; 2650: 123-132, 2023.
Article in English | MEDLINE | ID: mdl-37310628

ABSTRACT

Organoid cultures have been developed to model intestinal stem cell (ISC) function in self-renewal and differentiation. Upon differentiation, the first fate decision for ISC and early progenitors to make is between secretory (Paneth cell, goblet cell, enteroendocrine cell, or tuft cell) and absorptive (enterocyte and M cell) lineages. Using genetic and pharmacological approaches, in vivo studies in the past decade have revealed that Notch signaling functions as a binary switch for the secretory vs. absorptive lineage decision in adult intestine. Recent breakthroughs in organoid-based assays enable real-time observation of smaller-scale and higher-throughput experiments in vitro, which have begun contributing to new understandings of mechanistic principles underlying intestinal differentiation. In this chapter, we summarize the in vivo and in vitro tools for modulating Notch signaling and assess its impact on intestinal cell fate. We also provide example protocols of how to use intestinal organoids as functional assays to study Notch activity in intestinal lineage decisions.


Subject(s)
Enterocytes , Intestines , Adult , Humans , Enteroendocrine Cells , Biological Assay , Organoids
15.
ACS Chem Neurosci ; 14(11): 2183-2192, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37134001

ABSTRACT

In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic (DA) neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of striatal [18F]DPA-714 binding ratio was elevated in 6-OHDA-treated rats during 1-3 weeks post-treatments, with peak TSPO binding in the 1st week. No difference between the bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.


Subject(s)
Microglia , Parkinson Disease , Animals , Rats , Carrier Proteins/metabolism , Disease Models, Animal , Fluorine Radioisotopes/metabolism , Fluorodeoxyglucose F18/metabolism , Magnetic Resonance Imaging , Microglia/metabolism , Oxidopamine/toxicity , Parkinson Disease/metabolism , Positron-Emission Tomography/methods
17.
Front Cell Infect Microbiol ; 13: 1129996, 2023.
Article in English | MEDLINE | ID: mdl-36968108

ABSTRACT

Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn's disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.


Subject(s)
Crohn Disease , Gastrointestinal Diseases , Yersinia Infections , Yersinia enterocolitica , Humans , Crohn Disease/microbiology , Yersinia Infections/diagnosis , Yersinia Infections/microbiology
18.
Biomed Res Int ; 2023: 9936087, 2023.
Article in English | MEDLINE | ID: mdl-36685670

ABSTRACT

Background: This study is aimed at constructing a nomogram to predict the risk of clinically significant prostate cancer (csPCa) based on the aggregate index of systemic inflammation (AISI) and prostate imaging-reporting and data system version (PIRADS) score. Methods: Clinical data on patients who had undergone initial prostate biopsy from January 2019 to December 2021 were collected. Patients were randomized in a 7 : 3 ratio to the training cohort and the validation cohort. Potential risk factors for csPCa were identified by univariable and multivariate logistic regression. Nomogram was conducted with these independent risk factors, and calibration curves, the receiver operating characteristic (ROC), and decision curve analysis (DCA) were employed to assess the nomogram's ability for prediction. Results: A total of 1219 patients were enrolled in this study. Multivariate logistic regression identified that age, AISI, total prostatic specific-antigen (tPSA), free to total PSA (f/tPSA), prostate volume (PV), and PIRADS score were potential risk predictors of csPCa, and the nomogram was developed based on these factors. The area under the curve (AUC) of the training cohort and validation cohort was 0.884 (95% CI: 0.862-0.906) and 0.899 (95% CI: 0.867-0.931). The calibration curves showed that the apparent curves were closer to the ideal curves. The DCA results revealed that the nomogram model seemed to have clinical application value per DCA. Conclusion: The nomogram model can efficiently predict the risk of csPCa and may assist clinicians in determining if a prostate biopsy is necessary.


Subject(s)
Nomograms , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostate-Specific Antigen , Biopsy , Inflammation/diagnostic imaging , Retrospective Studies
19.
Environ Pollut ; 319: 121014, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36608727

ABSTRACT

Zero-valent iron (Fe) is commonly employed as an additive for the mechanochemical destruction (MCD) of organic pollutants. The poly- and perfluoroalkyl substances (e.g., perfluorooctane sulfonate, PFOS) are a class of toxic environmental pollutants that are difficult to effectively degrade due to their thermodynamic and chemical stability. In this study, magnetite (Fe3O4) was applied to improve the milling performance of Fe to PFOS and its promoting mechanisms were emphatically explored. The desulfurization rate was in ahead of the defluorination rate because the C-S bond is less stable than the C-F bonds in PFOS. Fe3O4 had an excellent reinforcement effect on the milling performance of Fe, which was mainly through accelerating the electron transfer as a conductor, reacting with Fe to produce FeO, and facilitating the formation of HO●. During the MCD of PFOS with Fe/Fe3O4 as an additive, HO● played a dominant role in the defluorination process (accounting for >67%). After the elimination of sulfonate group (-SO3-), the produced radical (C7F15CF2●) continued to react through two main pathways: one was the stepwise defluorination after hydrogenation, and the other one was oxidation reaction after alcoholization to yield the corresponding aldehydes and carboxylic acids. The optimum Fe fraction (MFe) was 30%, and air atmosphere was more effective than oxygen and nitrogen conditions. This study helps to comprehensively understand the role of Fe3O4 in defluorination and fills the gap of Fe/Fe3O4 application in the MCD of PFASs.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Iron/chemistry , Ferrosoferric Oxide , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Environmental Pollutants/chemistry
20.
ACS Chem Neurosci ; 13(23): 3464-3476, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36441909

ABSTRACT

The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.


Subject(s)
Positron Emission Tomography Computed Tomography , Receptors, Purinergic P2X7 , Animals , Mice , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...