Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Plant Dis ; 104(8): 2082-2085, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32552283

ABSTRACT

Wheat stem rust caused by Puccinia graminis f. sp. tritici is an important wheat disease with sudden and devastating characteristics. The appearance and spread of new P. graminis f. sp. tritici races (Ug99, TKTTF, and TTTTF) have once again renewed the interest in the prevention and control of wheat stem rust. Fungicides can effectively control the epidemics of this disease in a short period of time. However, the fungal pathogen is prone to developing resistance. Therefore, we collected 89 isolates of P. graminis f. sp. tritici from four provinces in China and used the spore germination method to test the sensitivity of the isolates to fungicide triadimefon. Seven relatively triadimefon-sensitive isolates and six relatively triadimefon-resistant isolates were further tested for sensitivity to fungicides carbendazim, mancozeb, thiophanate-methyl, and kresoxim-methyl. The results showed that the mean concentration for 50% of maximal effect of the isolates to triadimefon was 16.14 mg·liter-1, and the mean resistance factor was 4.48. Only 29 isolates were resistant to triadimefon in which 27 isolates had low levels of resistance and 2 isolates had moderate levels of resistance. However, most of the 89 isolates had no resistance to triadimefon. There was a positive correlation between resistance to triadimefon and carbendazim, but there was no cross-resistance between triadimefon resistance with thiophanate-methyl or kresoxim-methyl resistance. This study provides valuable information for managing fungicide resistant isolates of P. graminis f. sp. tritici.


Subject(s)
Basidiomycota , Fungicides, Industrial , China , Plant Diseases , Triazoles
2.
Sheng Wu Gong Cheng Xue Bao ; 29(1): 78-86, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23631120

ABSTRACT

In order to study the expression and the activity of inositol phosphorylceramide synthase (BcAUR1 gene) in Botrytis cinerea, we amplified BcAUR1 by RT-PCR from Botrytis cinerea, using the special primers with FLAG and BamH I/Xho I restriction sites. Recombinant pYES2-BcAUR1 was constructed to transform into Saccharomyces cerevisae deltayorl by LiAC. The expression of inositol phosphorylceramide (IPC) synthase and its activity were detected by Western blotting and HPLC, respectively. The results show that pYES2-BcAUR1 could express in uracil mutant deltayorl of Saccharomyces cerevisae. IPC synthase enzyme activity of pYES2-BcAUR1 transformants significantly increased and was approximately double than no-load BcAUR1 transformants. The low concentration of Aureobasidin A could inhibit growth of no-load BcAUR1 transformants, but pYES2-BcAUR1 transformants could resist fungal growth inhibition which was induced by Aureobasidin A.


Subject(s)
Botrytis/enzymology , Botrytis/genetics , Fungal Proteins/metabolism , Hexosyltransferases/metabolism , Depsipeptides/pharmacology , Fungal Proteins/genetics , Gene Expression , Genetic Vectors , Hexosyltransferases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...