Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(32): 11294-11303, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37534406

ABSTRACT

As a promising photocatalyst material, g-C3N4 has great application potential in energy production and environmental improvement. In this work, surface-modified g-C3N4 nanosheets with excellent stability and high photocatalytic activity were successfully synthesized by physical steam activation. The charge transfer rate of carbon nitride was improved due to the synergistic effect of nitrogen defect and oxygen doping caused by steam activation. Meanwhile, the specific surface area and pore volume of the optimized sample reached 124.3 m2 g-1 and 0.42 cm3 g-1, respectively, which increased the exposed reaction sites of reactants, enhancing the photocatalytic activity of g-C3N4. In addition, this novel g-C3N4 displayed a great H2 evolution rate of 5889.39 µmol h-1 g-1 with a methylene blue degradation rate up to 6.52 × 10-3 min-1, which was 3.7 and 2.1 times of original g-C3N4, respectively. This study provided a simple and economical method to develop a highly efficient g-C3N4 photocatalyst for solar energy conversion.

2.
Langmuir ; 39(19): 6924-6931, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37129080

ABSTRACT

Carbon-based supercapacitors with high performance have a wide foreground among various energy storage devices. In this work, wood-based hollow carbon spheres (WHCS) were prepared from liquefied wood through the processes of emulsification, curing, carbonization, and activation. Then, the hydrodeposition method was used to introduce nickel sulfide (NiS) to the surface of the microspheres, obtaining NiS/WHCS as the supercapacitor electrode. The results show that NiS/WHCS microspheres exhibited a core-shell structure and flower-like morphology with a specific surface (307.55 m2 g-1) and a large total pore volume (0.14 cm3 g-1). Also, the capacitance could be up to 1533.6 F g-1 at a current density of 1 A g-1. In addition, after 1000 charge/discharge cycles, the specific capacitance remained at 72.8% at the initial current density of 5 A g-1. Hence, NiS/WHCS with excellent durability and high specific capacitance is a potential candidate for electrode materials.

3.
Bioresour Technol ; 370: 128581, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608857

ABSTRACT

The potential of palm oil and derived wastewater pretreated by enzyme as co-substrates to accumulate polyhydroxyalkanoate (PHA) rich in short and medium-chain-length monomers under two feeding strategies was evaluated batchwise through mixed microbial cultures (MMCs) in activated sludge. A terpolymer with the maximum PHA content of 30.5 wt%, volumetric yield of 0.372 g COD/g COD and composition of ca. 84.7 âˆ¼ 97.4/0.5 âˆ¼ 1.6/2.1 âˆ¼ 13.7 (3-hydroxybutyrate/ 3-hydroxyvalerate/ 3-hydroxyoctanoate, %) was achieved as a result of co-substrate incorporation. From the perspective of economic benefits, PHA accumulated via adopting strategy of supplementing carbon source to the same initial concentration per cycle saved 42.7 % of carbon consumption, along with a reduction in culture time (72 h). The above discoveries signify that the combination of palm oil and derived wastewater plus MMCs provides an alternative to the plastics industries for a more sustainable and efficient utilization of biological resources and an economic PHA accumulation approach.


Subject(s)
Polyhydroxyalkanoates , Wastewater , Sewage , Polyhydroxyalkanoates/metabolism , Palm Oil , Bioreactors
4.
Bioresour Technol ; 331: 125031, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33798859

ABSTRACT

Using mixed microbial consortium (MMC) to accumulate polyhydroxyalkanoate (PHA) is an effective strategy to solve high production cost and reduce the amount of excess sludge. In this study, a process for the production of short-chain-length and medium-chain-length PHA using volatile fatty acids (VFAs) from pretreated wood hydrolysate synergistic with octanoate as co-substrate was proposed. The effects of co-substrate ratios on PHA accumulation ability and physical properties were investigated. The incorporation of co-substrate accelerated the time of PHA and 3-hydroxyoctanoate reaching the maximum production (1834 and 280 mg COD/L). The highest PHA content was 53.0% (w/w), which was equivalent to that reported previously. The biopolymer films possessed high tensile strength, Young's modulus, and could be used in the field of water vapor barrier requirements. The accumulation strategy applied for converting fermentation products VFAs and octanoate co-substrate into high value and yield PHA could potentially demonstrate the valuable for low-cost large-scale production.


Subject(s)
Polyhydroxyalkanoates , Bioreactors , Biotransformation , Caprylates , Fatty Acids, Volatile , Fermentation , Polyhydroxyalkanoates/metabolism , Sewage
5.
Langmuir ; 37(14): 4137-4146, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33813823

ABSTRACT

Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.


Subject(s)
Biomimetic Materials , Bone and Bones/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Durapatite , Graphite , Microspheres , Sea Urchins , Animals , Bone and Bones/cytology , Cell Survival/drug effects , Drug Carriers/pharmacology , Ethylenediamines , Hydrogen-Ion Concentration , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Stem Cells/drug effects
6.
Bioresour Technol ; 316: 123911, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32758919

ABSTRACT

The purpose of this study was to explore the potential of producing Poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) by mixed microbial culture (MMC) with lignocellulosic hydrolysates and acetate co-substrate as feedstock. The addition of co-substrate acetate led to the introduction of HV monomer into the polyhydroxyalkanoate (PHA), and the initial mixed sludge suspension (MLSS) increased with the increase of acetate. Almost 1.91-fold increase in the yield of PHA was achieved with limited nitrogen medium (the carbon to nitrogen ratio (C/N) was 33) compared to the normal nitrogen medium (C/N = 20). Limiting nitrogen source and micro alkaline culture environment was more conducive to the accumulation of PHBV. PHA production achieved to the highest value of about 2308.45 mg/L under the condition of optimized technology. Acidovorax was the dominant genus of all bioreactors using co-substrate. Further, utilizing lignocellulosic hydrolysate and acetate co-substrate as feedstock in mixed microbial culture was a promising approach in a low-cost large-scale PHA production.


Subject(s)
Acetates , Polyesters , 3-Hydroxybutyric Acid , Lignin , Pentanoic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...