Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38711367

ABSTRACT

Hi-C data are commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation change across the contact map. We present band-wise normalization and batch correction, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a quantitative trait loci analysis as well as differential enrichment across cell types.


Subject(s)
Quantitative Trait Loci , Humans , Computational Biology
2.
Nat Commun ; 14(1): 6711, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872149

ABSTRACT

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.


Subject(s)
Polymorphism, Single Nucleotide , Tandem Repeat Sequences , Humans , Genotype , Whole Genome Sequencing
3.
bioRxiv ; 2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36945429

ABSTRACT

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.

4.
Genome Med ; 14(1): 84, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35948990

ABSTRACT

BACKGROUND: Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual assessment of variant calls in clinical settings, current computational tools lack the ability to produce such visualizations for repeat expansions. Expanded repeats are difficult to visualize because they correspond to large insertions relative to the reference genome and involve many misaligning and ambiguously aligning reads. RESULTS: We implemented REViewer, a computational method for visualization of sequencing data in genomic regions containing long repeat expansions and FlipBook, a companion image viewer designed for manual curation of large collections of REViewer images. To generate a read pileup, REViewer reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that is most consistent with the fragment lengths and evenness of read coverage. To create appropriate training materials for onboarding new users, we performed a concordance study involving 12 scientists involved in short tandem repeat research. We used the results of this study to create a user guide that describes the basic principles of using REViewer as well as a guide to the typical features of read pileups that correspond to low confidence repeat genotype calls. Additionally, we demonstrated that REViewer can be used to annotate clinically relevant repeat interruptions by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent with triplet repeat primed PCR. CONCLUSIONS: Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in regions containing long repeat expansions. Laboratories can use REViewer and FlipBook to assess the quality of repeat genotype calls as well as to visually detect interruptions or other imperfections in the repeat sequence and the surrounding flanking regions. REViewer and FlipBook are available under open-source licenses at https://github.com/illumina/REViewer and https://github.com/broadinstitute/flipbook respectively.


Subject(s)
Amyotrophic Lateral Sclerosis , Tandem Repeat Sequences , Alleles , Amyotrophic Lateral Sclerosis/genetics , Exome , Fragile X Mental Retardation Protein/genetics , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Humans
5.
Sci Adv ; 8(21): eabl9806, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613278

ABSTRACT

Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.

6.
Cell Genom ; 2(12): 100214, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36778047

ABSTRACT

We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-ßH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.

7.
Nat Commun ; 12(1): 6636, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789735

ABSTRACT

FOXA pioneer transcription factors (TFs) associate with primed enhancers in endodermal organ precursors. Using a human stem cell model of pancreas differentiation, we here discover that only a subset of pancreatic enhancers is FOXA-primed, whereas the majority is unprimed and engages FOXA upon lineage induction. Primed enhancers are enriched for signal-dependent TF motifs and harbor abundant and strong FOXA motifs. Unprimed enhancers harbor fewer, more degenerate FOXA motifs, and FOXA recruitment to unprimed but not primed enhancers requires pancreatic TFs. Strengthening FOXA motifs at an unprimed enhancer near NKX6.1 renders FOXA recruitment pancreatic TF-independent, induces priming, and broadens the NKX6.1 expression domain. We make analogous observations about FOXA binding during hepatic and lung development. Our findings suggest a dual role for FOXA in endodermal organ development: first, FOXA facilitates signal-dependent lineage initiation via enhancer priming, and second, FOXA enforces organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs.


Subject(s)
Endoderm/embryology , Enhancer Elements, Genetic/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Binding Sites , Cell Differentiation , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Humans , Liver/embryology , Lung/embryology , Nucleotide Motifs , Organ Specificity , Organogenesis , Pancreas/embryology , Trans-Activators/genetics
8.
Cell ; 184(24): 5985-6001.e19, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34774128

ABSTRACT

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.


Subject(s)
Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Adult , Cluster Analysis , Fetus/metabolism , Genetic Variation , Genome-Wide Association Study , Humans , Organ Specificity , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Risk Factors
9.
Nature ; 598(7879): 129-136, 2021 10.
Article in English | MEDLINE | ID: mdl-34616068

ABSTRACT

The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.


Subject(s)
Cerebrum/cytology , Cerebrum/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Atlases as Topic , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/genetics , Neuroglia/classification , Neuroglia/metabolism , Neurons/classification , Neurons/metabolism , Sequence Analysis, DNA , Single-Cell Analysis
10.
Nat Genet ; 53(4): 455-466, 2021 04.
Article in English | MEDLINE | ID: mdl-33795864

ABSTRACT

Single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) creates new opportunities to dissect cell type-specific mechanisms of complex diseases. Since pancreatic islets are central to type 2 diabetes (T2D), we profiled 15,298 islet cells by using combinatorial barcoding snATAC-seq and identified 12 clusters, including multiple alpha, beta and delta cell states. We cataloged 228,873 accessible chromatin sites and identified transcription factors underlying lineage- and state-specific regulation. We observed state-specific enrichment of fasting glucose and T2D genome-wide association studies for beta cells and enrichment for other endocrine cell types. At T2D signals localized to islet-accessible chromatin, we prioritized variants with predicted regulatory function and co-accessibility with target genes. A causal T2D variant rs231361 at the KCNQ1 locus had predicted effects on a beta cell enhancer co-accessible with INS and genome editing in embryonic stem cell-derived beta cells affected INS levels. Together our findings demonstrate the power of single-cell epigenomics for interpreting complex disease genetics.


Subject(s)
Chromatin/chemistry , Diabetes Mellitus, Type 2/genetics , Glucagon-Secreting Cells/metabolism , Insulin-Secreting Cells/metabolism , KCNQ1 Potassium Channel/genetics , Pancreatic Polypeptide-Secreting Cells/metabolism , Somatostatin-Secreting Cells/metabolism , Blood Glucose/metabolism , Cell Differentiation , Chromatin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Epigenomics , Fasting , Gene Expression Profiling , Genome-Wide Association Study , Glucagon-Secreting Cells/pathology , High-Throughput Nucleotide Sequencing , Human Embryonic Stem Cells/cytology , Humans , Insulin-Secreting Cells/pathology , KCNQ1 Potassium Channel/metabolism , Multigene Family , Pancreatic Polypeptide-Secreting Cells/pathology , Polymorphism, Genetic , Single-Cell Analysis , Somatostatin-Secreting Cells/pathology , Transcription Factors/classification , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Elife ; 102021 02 05.
Article in English | MEDLINE | ID: mdl-33544077

ABSTRACT

Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Epigenome , Intracellular Signaling Peptides and Proteins/genetics , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
12.
BMC Genomics ; 22(1): 84, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509077

ABSTRACT

BACKGROUND: Co-localized combinations of histone modifications ("chromatin states") have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points ("chromatin state trajectories") have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs. RESULTS: We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex . CONCLUSIONS: TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Bayes Theorem , Chromatin/genetics , Chromosomes , Promoter Regions, Genetic
13.
Nature ; 591(7848): 147-151, 2021 03.
Article in English | MEDLINE | ID: mdl-33505025

ABSTRACT

Many sequence variants have been linked to complex human traits and diseases1, but deciphering their biological functions remains challenging, as most of them reside in noncoding DNA. Here we have systematically assessed the binding of 270 human transcription factors to 95,886 noncoding variants in the human genome using an ultra-high-throughput multiplex protein-DNA binding assay, termed single-nucleotide polymorphism evaluation by systematic evolution of ligands by exponential enrichment (SNP-SELEX). The resulting 828 million measurements of transcription factor-DNA interactions enable estimation of the relative affinity of these transcription factors to each variant in vitro and evaluation of the current methods to predict the effects of noncoding variants on transcription factor binding. We show that the position weight matrices of most transcription factors lack sufficient predictive power, whereas the support vector machine combined with the gapped k-mer representation show much improved performance, when assessed on results from independent SNP-SELEX experiments involving a new set of 61,020 sequence variants. We report highly predictive models for 94 human transcription factors and demonstrate their utility in genome-wide association studies and understanding of the molecular pathways involved in diverse human traits and diseases.


Subject(s)
Polymorphism, Single Nucleotide/genetics , SELEX Aptamer Technique , Support Vector Machine , Transcription Factors/metabolism , Binding Sites/genetics , Disease/genetics , Genome, Human/genetics , Humans , Ligands , Protein Binding
15.
Comput Struct Biotechnol J ; 19: 355-362, 2021.
Article in English | MEDLINE | ID: mdl-33489005

ABSTRACT

Hi-C experiments have been widely adopted to study chromatin spatial organization, which plays an essential role in genome function. We have recently identified frequently interacting regions (FIREs) and found that they are closely associated with cell-type-specific gene regulation. However, computational tools for detecting FIREs from Hi-C data are still lacking. In this work, we present FIREcaller, a stand-alone, user-friendly R package for detecting FIREs from Hi-C data. FIREcaller takes raw Hi-C contact matrices as input, performs within-sample and cross-sample normalization, and outputs continuous FIRE scores, dichotomous FIREs, and super-FIREs. Applying FIREcaller to Hi-C data from various human tissues, we demonstrate that FIREs and super-FIREs identified, in a tissue-specific manner, are closely related to gene regulation, are enriched for enhancer-promoter (E-P) interactions, tend to overlap with regions exhibiting epigenomic signatures of cis-regulatory roles, and aid the interpretation or GWAS variants. The FIREcaller package is implemented in R and freely available at https://yunliweb.its.unc.edu/FIREcaller.

17.
Nature ; 583(7818): 744-751, 2020 07.
Article in English | MEDLINE | ID: mdl-32728240

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Datasets as Topic , Fetal Development/genetics , Histones/metabolism , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Animals , Chromatin/chemistry , Chromatin Immunoprecipitation Sequencing , Disease/genetics , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Developmental/genetics , Genetic Variation , Histones/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Organ Specificity/genetics , Reproducibility of Results , Transposases/metabolism
18.
Genome Biol ; 20(1): 255, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31779666

ABSTRACT

BACKGROUND: The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin conformation varies in the human population, or whether DNA sequence variation between individuals influences 3D chromatin conformation. RESULTS: To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify thousands of regions across the genome where 3D chromatin conformation varies between individuals and find that this variation is often accompanied by variation in gene expression, histone modifications, and transcription factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk. CONCLUSION: Our results demonstrate that common DNA sequence variants can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation than previously recognized.


Subject(s)
Base Sequence , Genetic Variation , Genome, Human , Nucleic Acid Conformation , Epigenome , Humans , Quantitative Trait Loci , Transcriptome
19.
Nat Genet ; 51(9): 1380-1388, 2019 09.
Article in English | MEDLINE | ID: mdl-31427791

ABSTRACT

Chromatin architecture has been implicated in cell type-specific gene regulatory programs, yet how chromatin remodels during development remains to be fully elucidated. Here, by interrogating chromatin reorganization during human pluripotent stem cell (hPSC) differentiation, we discover a role for the primate-specific endogenous retrotransposon human endogenous retrovirus subfamily H (HERV-H) in creating topologically associating domains (TADs) in hPSCs. Deleting these HERV-H elements eliminates their corresponding TAD boundaries and reduces the transcription of upstream genes, while de novo insertion of HERV-H elements can introduce new TAD boundaries. The ability of HERV-H to create TAD boundaries depends on high transcription, as transcriptional repression of HERV-H elements prevents the formation of boundaries. This ability is not limited to hPSCs, as these actively transcribed HERV-H elements and their corresponding TAD boundaries also appear in pluripotent stem cells from other hominids but not in more distantly related species lacking HERV-H elements. Overall, our results provide direct evidence for retrotransposons in actively shaping cell type- and species-specific chromatin architecture.


Subject(s)
Chromatin/genetics , Endogenous Retroviruses/genetics , Gene Expression Regulation , Pluripotent Stem Cells/cytology , Response Elements , Retroelements/genetics , Transcription, Genetic , Animals , Cell Differentiation , Humans , Pluripotent Stem Cells/physiology , Primates , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Nat Commun ; 10(1): 2078, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064983

ABSTRACT

Genetic variants affecting pancreatic islet enhancers are central to T2D risk, but the gene targets of islet enhancer activity are largely unknown. We generate a high-resolution map of islet chromatin loops using Hi-C assays in three islet samples and use loops to annotate target genes of islet enhancers defined using ATAC-seq and published ChIP-seq data. We identify candidate target genes for thousands of islet enhancers, and find that enhancer looping is correlated with islet-specific gene expression. We fine-map T2D risk variants affecting islet enhancers, and find that candidate target genes of these variants defined using chromatin looping and eQTL mapping are enriched in protein transport and secretion pathways. At IGF2BP2, a fine-mapped T2D variant reduces islet enhancer activity and IGF2BP2 expression, and conditional inactivation of IGF2BP2 in mouse islets impairs glucose-stimulated insulin secretion. Our findings provide a resource for studying islet enhancer function and identifying genes involved in T2D risk.


Subject(s)
Chromatin/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Regulatory Networks/genetics , Islets of Langerhans/metabolism , RNA-Binding Proteins/genetics , Adult , Animals , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly/genetics , Diabetes Mellitus, Type 2/pathology , Enhancer Elements, Genetic/genetics , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Glucose/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Molecular Conformation , Quantitative Trait Loci/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...