Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(51): 23322-23328, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-32897617

ABSTRACT

Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.

2.
Inorg Chem ; 59(9): 6047-6052, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32314905

ABSTRACT

Solvothermal reactions of 3-(3-methylpyridin-4-yl)benzoic acid (Hmpba) with Mn(NO3)2 or Co(NO3)2 yielded isostructural porous coordination polymers, [Mn(mpba)2]·guest (MCF-56, 1·g) and [Co(mpba)2]·guest (MCF-57, 2·g), respectively. X-ray diffraction revealed that 1·g and 2·g possess similar one-dimensional ultramicroporous channels, and guest-free [Mn(mpba)2] (1') and [Co(mpba)2] (2') possess significantly and slightly contracted channels, respectively. Single-component C3H6/C3H8 adsorption isotherms and computational simulations showed the typical nonporous-to-porous structural transformations for 1', in which C3H6 exhibits a significantly lower threshold pressure, and the typical small-pore-to-large-pore structural transformations for 2', in which C3H6 exhibits a slightly lower threshold pressure. Mixture column breakthrough experiments showed that the C3H6/C3H8 separation performances of 2' are obviously better than those of 1', because the latter cannot adsorb C3H6 below the threshold pressure for pore opening, and the pore opened by C3H6 can adsorb C3H8.

SELECTION OF CITATIONS
SEARCH DETAIL
...