Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Neurol ; 84(5): 325-332, 2021.
Article in English | MEDLINE | ID: mdl-34182565

ABSTRACT

BACKGROUND: Central nervous system (CNS) infectious diseases are common diseases in emergency rooms and neurology departments. CNS pathogen identification methods are time consuming and expensive and have low sensitivity and poor specificity. Some studies have shown that bacteria and viruses can produce specific volatile organic compounds (VOCs). The aim of this study is to find potential biomarkers by VOC analysis of cerebrospinal fluid (CSF) in patients with bacterial and viral meningitis/encephalitis (ME). METHODS: CSF samples from 16 patients with bacterial ME and 42 patients with viral ME were collected, and solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze the metabolites in the CSF. RESULTS: There are 2 substances (ethylene oxide and phenol) that were found to be different between the 2 groups. Ethylene oxide was significantly greater in the group of bacterial ME patients than in the viral ME group of patients (p < 0.05). In addition, phenol was remarkably increased in the group of ME patients compared with the bacterial ME patients (p < 0.05). CONCLUSIONS: Ethylene oxide and phenol may be potential biomarkers to distinguish bacterial ME and viral ME. VOC analysis of CSF may be used as a supporting tool for clinical diagnosis.


Subject(s)
Communicable Diseases , Meningitis, Bacterial , Viruses , Volatile Organic Compounds , Bacteria , Central Nervous System , Humans , Pilot Projects
2.
World J Gastrointest Oncol ; 13(12): 2114-2128, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-35070046

ABSTRACT

BACKGROUND: Gastric cancer is a common malignancy with poor prognosis, in which ferroptosis plays a crucial function in its development. Propofol is a widely used anesthetic and has antitumor potential in gastric cancer. However, the effect of propofol on ferroptosis during gastric cancer progression remains unreported. AIM: To explore the function of propofol in the regulation of ferroptosis and malignant phenotypes of gastric cancer cells. METHODS: MTT assays, colony formation assays, Transwell assays, wound healing assay, analysis of apoptosis, ferroptosis measurement, luciferase reporter gene assay, and quantitative reverse transcription polymerase chain reaction were used in this study. RESULTS: Our data showed that propofol was able to inhibit proliferation and induce apoptosis of gastric cancer cells. Meanwhile, propofol markedly repressed the invasion and migration of gastric cancer cells. Importantly, propofol enhanced the erastin-induced inhibition of growth of gastric cancer cells. Consistently, propofol increased the levels of reactive oxygen species, iron, and Fe2+ in gastric cancer cells. Moreover, propofol suppressed signal transducer and activator of transcription (STAT)3 expression by upregulating miR-125b-5p and propofol induced ferroptosis by targeting STAT3 in gastric cancer cells. The miR-125b-5p inhibitor or STAT3 overexpression reversed propofol-attenuated malignant phenotypes of gastric cancer cells. CONCLUSION: Propofol induced ferroptosis and inhibited malignant phenotypes of gastric cancer cells by regulating the miR-125b-5p/STAT3 axis. Propofol may serve as a potential therapeutic candidate for gastric cancer.

3.
J Clin Lab Anal ; 34(12): e23526, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33150682

ABSTRACT

BACKGROUND: It has proved that there is an association between cancer and volatile organic compounds (VOCs) of exhaled breath. This study targets on verifying the existence of specific VOCs in breathing in breast cancer patients, especially those with ductal carcinoma in situ (DCIS). METHODS: There were a total of 203 participants included in the final analysis, which included 71 (35.0%) patients with histologically confirmed breast cancer (including 13 with DCIS, 31 with lymph node metastasis-negative status, and 27 with lymph node metastasis-positive status), 78 (38.4%) healthy volunteers, and 54 (26.6%) patients with histologically confirmed gastric cancer. Gas chromatography-mass spectrometry and solid-phase microextraction were used to analyze the breath samples for the presence of VOCs. RESULTS: There were significant differences in the volatile organic metabolites between the DCIS, lymph node metastasis-negative breast cancer, and lymph node metastasis-positive breast cancer groups compared with the healthy controls as well as between the breast cancer and gastric cancer patients. An overlapping set of seven VOCs, including (S)-1,2-propanediol, cyclopentanone, ethylene carbonate, 3-methoxy-1,2-propanediol, 3-methylpyridine, phenol, and tetramethylsilane, was significantly different between the breast cancer patients and healthy individuals as well as between the breast cancer and gastric cancer patients. The combination of these seven compounds was considered as a biomarker for breast cancer. The sensitivity for predicting DCIS by this set of seven compounds was determined to be 80.77%, and the specificity was determined to be 100%. CONCLUSIONS: This set of seven breast cancer-specific VOCs can be regarded as one particular expiratory marker for DCIS and will help to establish new screening methods for early breast cancer.


Subject(s)
Breast Neoplasms/diagnosis , Breath Tests/methods , Carcinoma, Intraductal, Noninfiltrating/diagnosis , Early Detection of Cancer/methods , Gas Chromatography-Mass Spectrometry/methods , Adult , Aged , Female , Humans , Middle Aged , Prospective Studies , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...