Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202408586, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853460

ABSTRACT

Understanding the properties of the precursor can provide deeper insight into the crystallization and nucleation mechanisms of perovskites, which is vital for the solution-process device performance. In this work, we conducted a detailed investigation into the photophysics properties of all-inorganic perovskite (CsPbBr3) precursors in a broad concentration and various solvents. The precursor gradually transformed from the solution state into the colloidal state and exhibited aggregation-induced emission (AIE) character as the concentration increased. The aggregative luminescence from the precursors originates from the polybromide plumbous that is formed through the coordination of solvent molecules to the lead metal center. Two adducts with monodentate (PbBr2⋅solvent) and bidentate (PbB2⋅2solvent) ligands can be obtained based on the coordination capability, accompanied by a red and green emission with photoluminescence peak at 610 and 565 nm, respectively. Furthermore, the aggregative luminescence intensity and color could be regulated by changing the solvent and precursor ratio. Besides, we discussed the difference between the molecular aggregate in the organic system and the ionic aggregate in the inorganic system. The fluorescence that is sensitive to Pb²âº coordination reported here could be applied to screen perovskite additives and judge the precursor aging.

2.
Nat Commun ; 15(1): 4647, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821919

ABSTRACT

Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption.

3.
ACS Nanosci Au ; 4(2): 128-135, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38644965

ABSTRACT

Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.

4.
Nat Commun ; 15(1): 1910, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429274

ABSTRACT

On-surface synthesis relies on carefully designed molecular precursors that are thermally activated to afford desired, covalently coupled architectures. Here, we study the intramolecular reactions of vinyl groups in a poly-para-phenylene-based model system and provide a comprehensive description of the reaction steps taking place on the Au(111) surface under ultrahigh vacuum conditions. We find that vinyl groups successfully cyclize with the phenylene rings in the ortho positions, forming a dimethyl-dihydroindenofluorene as the repeating unit, which can be further dehydrogenated to a dimethylene-dihydroindenofluorene structure. Interestingly, the obtained polymer can be transformed cleanly into thermodynamically stable polybenzo[k]tetraphene at higher temperature, involving a previously elusive pentagon-to-hexagon transformation via ring opening and rearrangement on a metal surface. Our insights into the reaction cascade unveil fundamental chemical processes involving vinyl groups on surfaces. Because the formation of specific products is highly temperature-dependent, this innovative approach offers a valuable tool for fabricating complex, low-dimensional nanostructures with high precision and yield.

5.
ACS Nano ; 18(13): 9431-9442, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507745

ABSTRACT

The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.


Subject(s)
Nanoparticles , Neoplasms , Surgery, Computer-Assisted , Humans , Luminescence , Neoplasms/pathology , Nanoparticles/chemistry
6.
J Am Chem Soc ; 146(11): 7480-7486, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446414

ABSTRACT

In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.

7.
Nanoscale Horiz ; 9(4): 598-608, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38385442

ABSTRACT

We report on the synthesis of "clickable" graphene nanoribbons (GNRs) and their application as a versatile interface for electrochemical biosensors. GNRs are successfully deposited on gold-coated working electrodes and serve as a platform for the covalent anchoring of a bioreceptor (i.e., a DNA aptamer), enabling selective and sensitive detection of Interleukin 6 (IL6). Moreover, when applied as the intermediate linker on reduced graphene oxide (rGO)-based field-effect transistors (FETs), the GNRs provide improved robustness compared to conventional aromatic bi-functional linker molecules. GNRs enable an orthogonal and covalent attachment of a recognition unit with a considerably higher probe density than previously established methods. Interestingly, we demonstrate that GNRs introduce photoluminescence (PL) when applied to rGO-based FETs, paving the way toward the simultaneous optical and electronic probing of the attached biointerface.


Subject(s)
Biosensing Techniques , Graphite , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Graphite/chemistry , Biosensing Techniques/methods
8.
J Am Chem Soc ; 146(8): 5030-5044, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359354

ABSTRACT

Aggregate is one of the most extensive existing modes of matters in the world. Besides the research objectives of inanimate systems in physical science, the entities in life science can be regarded as living aggregates, which are far from being thoroughly understood despite the great advances in molecular biology. Molecular biology follows the research philosophy of reductionism, which generally reduces the whole into parts to study. Although reductionism benefits the understanding of molecular behaviors, it encounters limitations when extending to the aggregate level. Holism is another epistemology comparable to reductionism, which studies objectives at the aggregate level, emphasizing the interactions and synergetic/antagonistic effects of a group of composed single entities in determining the characteristics of a whole. As a representative of holism, aggregation-induced emission (AIE) materials have made great achievements in the past two decades in both physical and life science. In particular, the unique properties of AIE materials endow them with in situ and real-time visual methods to investigate the inconsistency between microscopic molecules and macroscopic substances, offering researchers excellent toolkits to study living aggregates. The applications of AIE materials in life science are still in their infancy and worth expanding. In this Perspective, we summarize the research progress of AIE materials in unveiling some phenomena and processes of living systems, aiming to provide a general research approach from the viewpoint of holism. At last, insights into what we can do in the near future are also raised and discussed.


Subject(s)
Molecular Biology , Philosophy
9.
Natl Sci Rev ; 11(2): nwad286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213521

ABSTRACT

Kidney transplantation is the gold standard for the treatment of end-stage renal diseases (ESRDs). However, the scarcity of donor kidneys has caused more and more ESRD patients to be stuck on the waiting list for transplant surgery. Improving the survival rate for renal grafts is an alternative solution to the shortage of donor kidneys. Therefore, real-time monitoring of the surgical process is crucial to the success of kidney transplantation, but efficient methods and techniques are lacking. Herein, a fluorescence technology based on bright, photostable and long-circulating aggregation-induced emission (AIE) active NIR-II nano-contrast agent DIPT-ICF nanoparticles for the whole-process monitoring and evaluation of renal transplantation has been reported. In the aggregated state, DIPT-ICF exhibits superior photophysical properties compared with the commercial dyes IR-26 and IR-1061. Besides, the long-circulating characteristic of the AIE nano-contrast agent helps to achieve renal angiography in kidney retrieval surgery, donor kidney quality evaluation, diagnosing vascular and ureteral complications, and assessment of renal graft reperfusion beyond renovascular reconstruction, which considerably outperforms the clinically approved indocyanine green (ICG).

10.
J Control Release ; 365: 876-888, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030082

ABSTRACT

As one of the most challenging cancers, glioma still lacks efficient therapeutic treatment in clinics. The dilemmas of nanodrug-based therapies for glioma are due not only the limited permeability of the blood-brain barrier (BBB) but also the deficiency of targeting tumor lesions. Thus, spatiotemporally sequential delivery of therapeutics from BBB-crossing to glioma accumulation is considered a strategy to obtain better outcomes. Here, we developed a biomimetic chemotherapy nanodrug composed of the hybrid membrane envelope of U87 cell membranes and RAW264.7 cell membranes, and the core of paclitaxel (PTX)-loaded liposome (PTX@C-MMCL). In the research, PTX@C-MMCL showed superior ability to cross the BBB via RAW264.7 cell membranes and accurate targeting to the brain tumor lesions relying on the homotypic targeting capacity of U87 cell membranes. Furthermore, PTX@C-MMCL can maintain a prolonged circulation in vivo. Importantly, PTX@C-MMCL effectively inhibited the development of glioma. Conclusively, our biomimetic nanodrug holds great potential for brain tumor targeting therapy.


Subject(s)
Brain Neoplasms , Glioma , Humans , Liposomes/metabolism , Biomimetics , Cell Line, Tumor , Glioma/metabolism , Brain Neoplasms/metabolism , Paclitaxel , Drug Delivery Systems , Blood-Brain Barrier/metabolism
11.
ACS Nano ; 17(24): 25205-25221, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091262

ABSTRACT

Targeted and controllable drug release at lesion sites with the aid of visual navigation in real-time is of great significance for precise theranostics of cancers. Benefiting from the marvelous features (e.g., bright emission and phototheranostic effects in aggregates) of aggregation-induced emission (AIE) materials, constructing AIE-based multifunctional nanocarriers that act as all-arounders to integrate multimodalities for precise theranostics is highly desirable. Here, an intelligent nanoplatform (P-TN-Dox@CM) with homologous targeting, controllable drug release, and in vivo dual-modal imaging for precise chemo-photothermal synergistic therapy is proposed. AIE photothermic agent (TN) and anticancer drug (Dox) are encapsulated in thermo-/pH-responsive nanogels (PNA), and the tumor cell membranes are camouflaged onto the surface of nanogels. Active targeting can be realized through homologous effects derived from source tumor cell membranes, which advantageously elevates the specific drug delivery to tumor sites. After being engulfed into tumor cells, the nanogels exhibit a burst drug release at low pH. The near-infrared (NIR) photoinduced local hyperthermia can activate severe cytotoxicity and further accelerate drug release, thus generating enhanced synergistic chemo-photothermal therapy to thoroughly eradicate tumors. Moreover, P-TN-Dox@CM nanogels could achieve NIR-fluorescence/photothermal dual-modal imaging to monitor the dynamic distribution of therapeutics in real-time. This work highlights the great potential of smart P-TN-Dox@CM nanogels as a versatile nanoplatform to integrate multimodalities for precise chemo-photothermal synergistic therapy in combating cancers.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Nanogels , Doxorubicin/pharmacology , Photothermal Therapy , Phototherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Cell Membrane , Cell Line, Tumor , Drug Liberation
12.
J Am Chem Soc ; 145(50): 27282-27294, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38063341

ABSTRACT

Remarkable advances have been achieved in solution self-assembly of polypeptides from the perspective of nanostructures, mechanisms, and applications. Despite the intrinsic chirality of polypeptides, the promising generation of aqueous circularly polarized luminescence (CPL) based on their self-assembly has been rarely reported due to the weak fluorescence of most polypeptides and the indeterminate self-assembly mechanism. Here, we propose a facile strategy for achieving aqueous CPL based on the self-assembly of simple homopolypeptides modified with a terminal group featuring both twisted intramolecular charge transfer and aggregation-induced emission properties. A morphology-dependent CPL can be observed under different self-assembly conditions by altering the solvents. A nanotoroid-dispersed aqueous solution with detectable CPL can be obtained by using tetrahydrofuran as a good solvent for the self-assembly, which is attributed to the involvement of the terminal group in the chiral environment formed by the homopolypeptide chains. However, such a chiral packing mode cannot be realized in nanorods self-assembled from dioxane, resulting in an inactive CPL phenomenon. Furthermore, CPL signals can be greatly amplified by co-assembly of homopolypeptides with the achiral small molecule derived from the terminal group. This work not only provides a pathway to construct aqueous CPL-active homopolypeptide nanomaterials but also reveals a potential mechanism in the self-assembly for chiral production, transfer, and amplification in polypeptide-based nanostructures.


Subject(s)
Luminescence , Nanostructures , Solvents , Fluorescence , Peptides
13.
ACS Nano ; 17(19): 18832-18842, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37729013

ABSTRACT

The fabrication of atomically precise nanographanes is a largely unexplored frontier in carbon-sp3 nanomaterials, enabling potential applications in phononics, photonics and electronics. One strategy is the hydrogenation of prototypical nanographene monolayers and multilayers under vacuum conditions. Here, we study the interaction of atomic hydrogen, generated by a hydrogen source and hydrogen plasma, with hexa-peri-hexabenzocoronene on gold using integrated time-of-flight mass spectrometry, scanning tunneling microscopy and Raman spectroscopy. Density functional tight-binding molecular dynamics is employed to rationalize the conversion to sp3 carbon atoms. The resulting hydrogenation of hexa-peri-hexabenzocoronene molecules is demonstrated computationally and experimentally, and the potential for atomically precise hexa-peri-hexabenzocoronene-derived nanodiamond fabrication is proposed.

14.
ACS Nano ; 17(19): 19265-19274, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37728982

ABSTRACT

The dysfunction of the blood circulation system typically induces acute or chronic ischemia in limbs and vital organs, with high disability and mortality. While conventional tomographic imaging modalities have shown good performance in the diagnosis of circulatory diseases, multiple limitations remain for real-time and precise hemodynamic evaluation. Recently, fluorescence imaging in the second region of the near-infrared (NIR-II, 1000-1700 nm) has garnered great attention in monitoring and tracing various biological processes in vivo due to its advantages of high spatial-temporal resolution and real-time feature. Herein, we employed NIR-II imaging to carry out a blood circulation assessment by aggregation-induced emission fluorescent aggregates (AIE nano contrast agent, AIE NPs). Thanks to the longer excited wavelength, enhanced absorptivity, higher brightness in the NIR-II region, and broader optimal imaging window of the AIE NPs, we have realized a multidirectional assessment for blood circulation in mice with a single NIR-II imaging modality. Thus, our work provides a fluorescence contrast agent platform for accurate hemodynamic assessment.


Subject(s)
Fluorescent Dyes , Optical Imaging , Animals , Mice , Optical Imaging/methods , Spectroscopy, Near-Infrared
15.
J Mater Chem B ; 11(26): 5953-5975, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37272910

ABSTRACT

Cancer is a mortal disease that can invade other parts of the body and cause severe complications. Despite their continuous progress, conventional cancer therapies including surgery, chemotherapy, and radiation therapy have their inherent limitations. To improve the precision of cancer treatment, maximize the therapeutic effect and minimize mortality, synergistic therapies combining imaging guiding technologies, phototherapy, and other therapies have emerged due to the mutually strengthening therapeutic efficacy. However, traditional organic phototherapeutic agents are limited since their aggregation in aqueous media usually affects both their luminescence behavior and therapeutic effect. In contrast, aggregate-induced emission luminogens (AIEgens) provide an ideal solution to develop phototherapy with bright fluorescence and a significant treatment effect in the aggregate state. Combining AIE-based phototherapy and conventional therapies benefits from synergistic effects and extends the potential of developing accurate cancer therapy. AIE-based synergistic therapy has been popularly discussed with such unexplored potential in recent years. This review will introduce the most recent progress of AIE-based synergistic cancer therapy.


Subject(s)
Luminescence , Neoplasms , Humans , Fluorescence , Theranostic Nanomedicine/methods , Neoplasms/drug therapy , Phototherapy
16.
Regen Biomater ; 10: rbad044, 2023.
Article in English | MEDLINE | ID: mdl-37265605

ABSTRACT

Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.

17.
Angew Chem Int Ed Engl ; 62(34): e202307750, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37365137

ABSTRACT

We report a facile synthesis of diindeno-fused dibenzo[a,h]anthracene derivatives (DIDBA-2Cl, DIDBA-2Ph, and DIDBA-2H) with different degrees of non-planarity using three substituents (chloro, phenyl, and hydrogen) of various sizes. The planarization of their cores, as evidenced by the decreased end-to-end torsional angles, was confirmed by X-ray crystallography. Their enhanced energy gaps with twisting were investigated by a combination of spectroscopic and electrochemical methods with density functional theory, which showed a transition from singlet open-shell to closed-shell configuration. Moreover, their doubly reduced states, DIDBA-2Ph2- and DIDBA-2H2- , were achieved by chemical reduction. The structures of dianions were identified by X-ray crystallographic analysis, which elucidated that the electron charging further distorted the backbones. The electronic structure of the dianions was demonstrated by experimental and theoretical approaches, suggesting decreased energy gaps with larger non-planarity, different from the neutral species.

18.
J Am Chem Soc ; 145(6): 3647-3655, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36744313

ABSTRACT

Nitrogen-doped graphitic carbon materials hosting single-atom iron (Fe-N-C) are major non-precious metal catalysts for the oxygen reduction reaction (ORR). The nitrogen-coordinated Fe sites are described as the first coordination sphere. As opposed to the good performance in ORR, that in the oxygen evolution reaction (OER) is extremely poor due to the sluggish O-O coupling process, thus hampering the practical applications of rechargeable zinc (Zn)-air batteries. Herein, we succeed in boosting the OER activity of Fe-N-C by additionally incorporating phosphorus atoms into the second coordination sphere, here denoted as P/Fe-N-C. The resulting material exhibits excellent OER activity in 0.1 M KOH with an overpotential as low as 304 mV at a current density of 10 mA cm-2. Even more importantly, they exhibit a remarkably small ORR/OER potential gap of 0.63 V. Theoretical calculations using first-principles density functional theory suggest that the phosphorus enhances the electrocatalytic activity by balancing the *OOH/*O adsorption at the FeN4 sites. When used as an air cathode in a rechargeable Zn-air battery, P/Fe-N-C delivers a charge-discharge performance with a high peak power density of 269 mW cm-2, highlighting its role as the state-of-the-art bifunctional oxygen electrocatalyst.

19.
ACS Nano ; 17(1): 597-605, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36542550

ABSTRACT

Solution-synthesized graphene nanoribbons (GNRs) facilitate various interesting structures and functionalities, like nonplanarity and thermolabile functional groups, that are not or not easily accessible by on-surface synthesis. Here, we show the successful high-vacuum electrospray deposition (HVESD) of well-elongated solution-synthesized GNRs on surfaces maintained in ultrahigh vacuum. We compare three distinct GNRs, a twisted nonplanar fjord-edged GNR, a methoxy-functionalized "cove"-type (or also called gulf) GNR, and a longer "cove"-type GNR both equipped with alkyl chains on Au(111). Nc-AFM measurements at room temperature with submolecular imaging combined with Raman spectroscopy allow us to characterize individual GNRs and confirm their chemical integrity. The fjord-GNR and methoxy-GNR are additionally deposited on nonmetallic HOPG and SiO2, and fjord-GNR is deposited on a KBr(001) surface, facilitating the study of GNRs on substrates, as of now not accessible by on-surface synthesis.

20.
J Phys Chem Lett ; 13(42): 9855-9861, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36251000

ABSTRACT

Concentration-dependent phase transitions in concentrated solutions have remained speculation due to the serious impediment of macromolecule dynamics by intensive topological entanglement or intermolecular interaction as well as the absence of powerful tool for detecting changes in chain or segment movement. Herein, taking a general polymer, namely, poly(vinyl alcohol) (PVA), as an example, a water-soluble fluorescent molecule with aggregation-induced emission (AIE) is introduced into the PVA solutions as a chain dynamics indicator to investigate phase transitions at high concentrations through in situ monitoring of the solvent evaporation process. Two turning points of fluorescent intensity are observed for the first time at mean concentrations of ∼25% and ∼45%, corresponding to the gelation and amorphous-to-crystalline transitions, respectively. Our work offers a fundamental insight into the physical nature of concentrate-dependent nonequilibrium transitions and develops a reliable and sensitive approach based on the AIE phenomenon for following high-concentration-triggered property changes of a polymer solution.


Subject(s)
Polymers , Polyvinyl Alcohol , Fluorescence , Polymers/chemistry , Polyvinyl Alcohol/chemistry , Water/chemistry , Solvents , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...