Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 717643, 2021.
Article in English | MEDLINE | ID: mdl-34650578

ABSTRACT

Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host-bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.

2.
Nucleic Acids Res ; 47(13): 7018-7034, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31114879

ABSTRACT

The yeast ribosome-associated complex RAC and the Hsp70 homolog Ssb are anchored to the ribosome and together act as chaperones for the folding and co-translational assembly of nascent polypeptides. In addition, the RAC/Ssb system plays a crucial role in maintaining the fidelity of translation termination; however, the latter function is poorly understood. Here we show that the RAC/Ssb system promotes the fidelity of translation termination via two distinct mechanisms. First, via direct contacts with the ribosome and the nascent chain, RAC/Ssb facilitates the translation of stalling-prone poly-AAG/A sequences encoding for polylysine segments. Impairment of this function leads to enhanced ribosome stalling and to premature nascent polypeptide release at AAG/A codons. Second, RAC/Ssb is required for the assembly of fully functional ribosomes. When RAC/Ssb is absent, ribosome biogenesis is hampered such that core ribosomal particles are structurally altered at the decoding and peptidyl transferase centers. As a result, ribosomes assembled in the absence of RAC/Ssb bind to the aminoglycoside paromomycin with high affinity (KD = 76.6 nM) and display impaired discrimination between stop codons and sense codons. The combined data shed light on the multiple mechanisms by which the RAC/Ssb system promotes unimpeded biogenesis of newly synthesized polypeptides.


Subject(s)
Codon/genetics , Molecular Chaperones/physiology , Multiprotein Complexes/physiology , Peptide Chain Termination, Translational/physiology , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/physiology , Codon, Terminator/genetics , Nucleic Acid Conformation , Organelle Biogenesis , Paromomycin/metabolism , Polylysine/genetics , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
3.
Plant Sci ; 224: 120-35, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24908513

ABSTRACT

Maturation of fruits involves a series of physiological, biochemical, and organoleptic changes that eventually make fleshy fruits attractive, palatable, and nutritional. In order to understand the mature mechanism of the early-maturing bud sport of 'Zaosu' pear, we analyzed the differences of proteome expression between the both pears in different mature stages by the methods of a combination of two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Seventy-five differential expressed protein spots (p<0.05) were obtained between 'Zaosu' pear and its early-maturing bud sport, but only sixty-eight were demonstratively identified in the database of NCBI and uniprot. The majority of proteins were linked to metabolism, energy, stress response/defense and cell structure. Additionally, our data confirmed an increase of proteins related to cell-wall modification, oxidative stress and pentose phosphate metabolism and a decrease of proteins related to photosynthesis and glycolysis during the development process of both pears, but all these proteins increased or decreased faster in the early-maturing bud sport. This comparative analysis between both pears showed that these proteins were closely associated with maturation and could provide more detailed characteristics of the maturation process of both pears.


Subject(s)
Fruit/metabolism , Mutation , Plant Proteins/metabolism , Proteome/metabolism , Pyrus/metabolism , Proteomics , Pyrus/genetics
4.
Proteome Sci ; 12(1): 7, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24507458

ABSTRACT

BACKGROUND: Apple, an invaluable fruit crop worldwide, is often prone to infection by pathogenic fungi. Identification of potentially resistance-conferring apple proteins is one of the most important aims for studying apple resistance mechanisms and promoting the development of disease-resistant apple strains. In order to find proteins which promote resistance to Marssonina coronaria, a deadly pathogen which has been related to premature apple maturation, proteomes from apple leaves inoculated with M. coronaria were characterized at 3 and 6 days post-inoculation by two dimensional electrophoresis (2-DE). RESULTS: Overall, 59 differentially accumulated protein spots between inoculation and non-inoculation were successfully identified and aligned as 35 different proteins or protein families which involved in photosynthesis, amino acid metabolism, transport, energy metabolism, carbohydrate metabolism, binding, antioxidant, defense and stress. Quantitative real-time PCR (qRT-PCR) was also used to examine the change of some defense and stress related genes abundance under inoculated conditions. CONCLUSIONS: In a conclusion, different proteins in response to Marssonina coronaria were identified by proteomic analysis. Among of these proteins, there are some PR proteins, for example class III endo-chitinase, beta-1,3-glucanase and thaumatine-like protein, and some antioxidant related proteins including aldo/keto reductase AKR, ascorbate peroxidase and phi class glutathione S-transferase protein that were associated with disease resistance. The transcription levels of class III endo-chitinase (L13) and beta-1, 3-glucanase (L17) have a good relation with the abundance of the encoded protein's accumulation, however, the mRNA abundance of thaumatine-like protein (L22) and ascorbate peroxidase (L28) are not correlated with their protein abundance of encoded protein. To elucidate the resistant mechanism, the data in the present study will promote us to investigate further the expression regulation of these target proteins.

5.
Proteome Sci ; 10(1): 51, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22931350

ABSTRACT

BACKGROUND: Breeding for strong red skin color is an important objective of the pear breeding program. There are few reports of proteome research in green skin pear and its red skin bud mutation. The manuscript at hand is one of the first studies dealing with 2D-PAGE-based analysis of pear fruits and leaves, establishing a suitable sample preparation and testing different 2D-PAGE protocols. Therefore, it may grant a basis for further studies on the pear proteome being the studies main goal. A proteomic analysis was conducted on leaves and fruits of 'Zaosu' pear (Pyrus bretschneideri Rehd.) and its red skin bud mutation in order to reveal their genetic differences in the protein level. RESULTS: In the present study, the optimized two-dimensional (2-D) gel electrophoresis system of pear leaf and fruit was set up, and applied to analyze the leaves and fruit protein. The interesting peptide fragments were determined using 4800 Plus MALDI TOF/TOFTM Analyzer mass spectrometer, and the sequence obtained was blasted in NCBInr to identify the differentially-expressed protein. In the 1.5-fold differently-expressed proteins between 'Zaosu' pear and its mutant, 10 out of 35 proteins in fruit and 12 out of 24 ones in leaves were identified successfully. Among the 22 identified proteins, 7 protein spots were related to photosynthesis and energy metabolism; 4 were associated with environmental stress; 4 with disease defense; 2 with amino acid metabolism; 2 with cytoskeleton; 1 with antioxidant function; 1 with calcium metabolism; and 1 with unknown function. Moreover, related physiological index, such as chlorophyll content, Rubisco content and polyphone oxidase activity, were different between 'Zaosu' pear and its mutant. CONCLUSION: A 2-D gel electrophoresis system of pear leaves and fruits was established, which was suitable for the analysis of proteome comparison. To the best of our knowledge, we have performed the first analysis of the proteomic changes in leaves and fruits of 'Zaosu' pear and its red skin bud mutation. Our study provides important information on the use of proteomic methods for studying protein regulation of 'Zaosu' pear and its red skin bud mutation.

SELECTION OF CITATIONS
SEARCH DETAIL
...