Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006151

ABSTRACT

Synthetic adhesives play a crucial role in holding together solid materials through interfacial interactions. Thermoplastic and thermosetting adhesives are important types of synthetic adhesives, with thermoplastic adhesives being reassemblable and thermosetting adhesives exhibiting high adhesive strength and creep resistance. However, there is a need to combine the advantages of both types and develop high bonding strength, reassemblable adhesives. Here, epoxidized soybean oil (ESO) was used to prepare adhesive networks and Diels-Alder bonds were incorporated to enhance reassembly ability. The ESO was functionalized with furyl groups and cross-linked via the reaction between furyl and imide groups to involve the Diels-Alder bonds. The resulting adhesive exhibited good solvent resistance and mechanical properties, which could be regulated by adjusting the quantity of cross-linker. The prepared adhesives also demonstrated self-healing capabilities, as the scratch on the surface gradually diminished with heating. Additionally, the adhesives showed the ability to undergo recycling without significant changes in properties. The prepared adhesives exhibited hydrophilicity and the flow characteristics during reassembly were characterized by a decrease in torque. This study provides a promising approach for the development of synthetic adhesives with reassembly ability, which has important implications for the field of bonding.

2.
Polymers (Basel) ; 15(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37631545

ABSTRACT

Thermosetting adhesives are commonly utilized in various applications. However, covalent cross-linked networks prevent thermosetting adhesives from being re-assembled, which necessitates higher machining precision. Additionally, the primary raw materials used in adhesive preparation are derived from non-renewable petroleum resources, which further constrain adhesive development. In this study, a recyclable adhesive was developed by incorporating dynamic boronic esters into epoxy resin derived from soybean oil. The successful synthesis of epoxidized soybean oil and boronic esters was confirmed through the analysis of proton nuclear magnetic resonance spectra and differential scanning calorimetry results. Swelling tests and tensile curves demonstrated the presence of covalently cross-linked networks. Self-healing and reprocessing experiments indicated that the cross-linked network topology could be re-assembled under mild conditions.

3.
J Hazard Mater ; 443(Pt A): 130130, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36265379

ABSTRACT

With rapid urbanization, microplastics and natural organic matters (NOMs) are ubiquitous in aquatic environment, and microplastics could act as carriers for organic matters in the aqueous solution and may pose a potential risk. In this study, the adsorption behaviors and mechanism of typical NOM, humic acid (HA), on polyvinyl chloride (PVC) and polystyrene (PS) microplastics were investigated. Various influence factors such as solution pH, ions species and concentrations, particle size, and coexisting surfactants were studied. The results suggested that HA adsorption onto PVC and PS was low pH-dependent, and ion species and concentrations have a significant impact on the adsorption capacity. In addition, the particle size of PVC and PS microplastics exhibited a significant correlation with HA adsorption, and the adsorption process was influenced by the surfactant species and concentrations. Moreover, the adsorption behaviors of HA in different real water environments were tested, and UV aging exhibited the opposite effects on adsorption capacity of PVC and PS. Furthermore, the adsorption mechanisms of HA onto PVC and PS were explored, indicating halogen bonding, hydrogen bonding, and π-π interaction play important roles in the adsorption process.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Adsorption , Kinetics , Polyvinyl Chloride , Water Pollutants, Chemical/analysis , Humic Substances/analysis , Water , Polystyrenes , Surface-Active Agents , Ions
4.
Environ Res ; 200: 111363, 2021 09.
Article in English | MEDLINE | ID: mdl-34048747

ABSTRACT

Microplastics are of great public concern due to their wide distribution and the potential risk to humans and animals. In this study, the microplastic pollution associated with bacterial communities, human pathogenic bacteria, and antibiotic resistance genes (ARGs) were investigated compared to water, sediment, and natural wood particles. Microplastics were widely distributed in surface water of the Ganjiang River at a watershed level with an average value of 407 particles m-3. The fragment was the main microplastic shape found in the basin. Microplastics had significantly higher observed species and Chao1 index of bacterial communities than those in water, but comparable to wood particles. However, there was no difference in the microplastics pollution and alpha diversity indices of bacterial between different reaches along the Ganjiang River. Flavobacterium, Rhodoferax, Pseudomonas, and Janthinobacterium on the microplastics were all found to be enriched compared with water and sediment. Principal component analysis of the composition and function profile of bacterial communities showed that microplastics provide a new microbial niche in the Ganjiang River, which was distinct from water, sediment, and natural wood. Pseudomonas genus dominated the composition of human pathogenic bacteria on the microplastics, which was significantly different from water and sediment. No difference was observed in the relative abundance of total ARGs among the four media. However, microplastic and wood particles showed similar composition patterns of ARGs compared with water and sediment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial , Environmental Monitoring , Genes, Bacterial , Humans , Plastics , Rivers , Water Pollutants, Chemical/analysis
5.
Water Sci Technol ; 83(5): 1183-1197, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33724946

ABSTRACT

In this study, the polyethyleneimine (PEI) modified waste bamboo powder (WBP-Na-PEI) was successfully prepared and applied to adsorbing Congo red (CR) dye from aqueous solution. The obtained materials were characterized by field emission scanning electron microscope, X-ray diffraction, Fourier transform-infrared, and thermogravimetric analysis. The results showed that WBP-Na-PEI(1.8 K-5) was synthesized successfully and PEI uniformly covered the WBP-Na-PEI(1.8 K-5) surface. In the process of adsorption, four kinds of influencing factors were discussed, and the adsorption mechanisms such as kinetics, isotherm, thermodynamics were explored. The maximum adsorption capacity of WBP-Na-PEI(1.8 K-5) was 992.94 mg·g-1 at 298 ± 1 K, and the removal efficiency was over 98%. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were studied, the results showed that the adsorption process conformed to the pseudo-second-order model, and the rate of this process was controlled by many steps. Furthermore, the removal efficiency of the adsorption kinetics reached 85% within 10 minutes. The results of the isotherm model and thermodynamics showed that the adsorption process was consistent with the Langmuir model and was mainly a spontaneous chemical endothermic process of monolayer. And the removal efficiency of the adsorbent reached 93% at the concentration of 400 mg/L, which can be expected to have a broad prospect in the treatment of CR industrial wastewater.


Subject(s)
Polyethyleneimine , Water Pollutants, Chemical , Adsorption , Alkalies , Hydrogen-Ion Concentration , Kinetics , Powders , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Wastewater
6.
Environ Technol ; 40(23): 3062-3071, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29659333

ABSTRACT

The coagulant dosage of an existing water plant is mainly determined based on the experience of water treatment process and influent/effluent water quality indexes that have time hysteresis effects. To solve this problem, the effect of coagulant dosage on a number of parameters used to evaluate the efficiency of flocculation in a setup was determined by using the micro-vortex flocculation technology in conjunction with the investigation of the relation between the equivalent diameter and the fractal dimension. By means of the machine vision system and computerized analysis, the effects of floc quantity, floc equivalent diameter and fractal dimension can be assessed. The correlations of these parameters with turbidity and ζ potential of the settling water, taken as measures for effluent quality, were explored. The study results show that the optimal flocculation effect with a turbidity removal rate of 97.9% is achieved at the poly-aluminum chloride dosage of 20 mg/L. Meanwhile, a power exponential relation between the floc equivalent diameter and the fractal dimension was established with a correlation coefficient R2 of 0.826; relations among the effluent turbidity and the floc quantity, equivalent diameter, fractal dimension were established with a correlation coefficient R2 of 0.982, 0.851, and 0.875, respectively; equations between the ζ potential and the floc quantity, equivalent diameter, fractal dimension were also established where the correlation coefficient R2 were 0.868, 0.879, and 0.942, respectively. These results may provide excellent reference data for water plants to feed back the coagulant by floc performance parameters, which could relieve the hysteresis effect efficiently.


Subject(s)
Water Purification , Flocculation , Fractals , Waste Disposal, Fluid , Water
7.
J Hazard Mater ; 166(2-3): 740-5, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19155133

ABSTRACT

In this paper, a new kind of inorganic polymeric flocculant (IPF)-polysilicate ferro-aluminum sulfate (PSFA) was adopted to treat banknote printing wastewater. Effects of flocculants dosage on the colour and Chemical Oxygen Demand (COD) removal were examined. Experiments revealed that maximal colour removal efficiency of 98% and COD removal efficiency of 85% could be achieved at the optimal dosage of 30.33 g/L. And the colour and COD removal results treated by the PSFA flocculant were compared with those treated by aluminum sulfate. Experimental results showed that the most attracting parts of PSFA as compared with that of Al(2)(SO(4))(3) were: (i) lower COD and colour contained effluents; (ii) less quantity and volume sludge; (iii) better dewatering behaviour and solid-liquid separation flocs; (iv) providing a possibility to eliminate the high labour intensity plate-frame pressure procedure and replace it by ordinary filtration. Therefore, the using of PSFA generally offered a lower cost of operation and maintenance choice to treat banknote printing wastewater as compared to that of Al(2)(SO(4))(3).


Subject(s)
Industrial Waste/prevention & control , Paper , Printing , Water Purification/methods , Alum Compounds/chemistry , Coloring Agents , Flocculation , Industrial Waste/economics , Oxygen , Water Pollutants , Water Purification/economics
8.
J Zhejiang Univ Sci B ; 6(10): 1033-7, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16187419

ABSTRACT

The elucidation of vapor-liquid equilibrium (VLE) of the halogenated silane was necessary for the production of silicon derivatives, especially for methylvinyldichlorosilane, due to the lack of the relevant reports. Isobaric VLE for the system methyldichlorosilane-dimethyldichlorosilane-benzene and isobaric VLE of the three binary systems were measured with a new pump-ebulliometer at the pressure of 101.325 kPa. These binary compositions of the equilibrium vapor were calculated according to the Q function of molar excess Gibbs energy by the indirect method and the resulted VLE data agreed well with the thermodynamic consistency. Moreover, the experimental data were correlated with the Wilson, NRTL, Margules and van Laar equations by means of the least-squares fit, the acquired optimal interaction parameters were fitted to experimental vapor-liquid equilibrium data for binary systems. The binary parameters of Wilson equation were also used to calculate the bubble point temperature and the vapor phase composition for the ternary mixtures without any additional adjustment. The predicted vapor-liquid equilibrium for the ternary system was in a good agreement with the experimental results. The VLE of binary and multilateral systems provided essential theory for the production of the halogenated silane.

9.
J Zhejiang Univ Sci B ; 6(6): 559-62, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15909344

ABSTRACT

This paper describes measurement of vapor-liquid equilibrium (VLE) data of methyldichlorosilane-methyltrichlorosilane-dimethyldichlorosilane system and that of the three binary systems at 101.325 kPa with a new pump-ebulliometer. The equilibrium composition of the vapor phase was calculated from pTx by indirect method. The model parameters of the liquid activity coefficient of the Wilson, NRTL, Margules and van Laar equations was corrected by the least square method. The ternary system VLE data were predicted by the Wilson equation, with the calculated boiling points showing good agreement with the experimental data.


Subject(s)
Gases/chemistry , Silanes/chemistry , Computer Simulation , Models, Chemical , Phase Transition , Pressure , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...