Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.613
Filter
1.
Clin Exp Rheumatol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39008291

ABSTRACT

OBJECTIVES: To locate the most valuable sites for shear wave elastography (SWE) evaluation and to develop a clinically applicable scoring system based on SWE for systemic sclerosis (SSc) and to verify the accuracy for detection and subdivision and the correlation by modified Rodnan total skin score (mRTSS). METHODS: SSc patients with limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) and symptomatic other rheumatic diseases (ORD) patients were included in this cross-sectional study. We assessed the skin stiffness at forehead, chest, abdomen, and bilateral fingers, hands, forearm, arms, thighs, legs, and feet, by palpation and SWE. Logistic regression was used to screen the most valuable sites for detection of SSc and subdivision of lcSSc and dcSSc, on which a scoring system was developed and verified. RESULTS: A total of 49 lcSSc, 51 dcSSc, and 36 ORD patients were included. The SWE-derived scoring system, including finger, hand, foot, arm, chest, and abdomen, reached a sensitivity and specificity of 80.0% and 94.4%, respectively, for diagnosing SSc at the cut-off value >24. The scoring system, including arm, chest, and abdomen, reached a sensitivity of 72.5% and specificity of 98.0% for subdividing dcSSc at the cut-off value >11. The kappa coefficient between the SWE-derived diagnosis and clinical diagnosis was 0.636 (P<0.001). The SWE-derived total scores of six sites had a strong correlation with mRTSS (r=0.757, p<0.001). CONCLUSIONS: The SWE-derived scoring system can be valuable in detection and evaluation of SSc in clinical application.

2.
J Biotechnol ; 392: 96-102, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960098

ABSTRACT

In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, -10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.

3.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Article in English | MEDLINE | ID: mdl-38904017

ABSTRACT

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Renal Insufficiency, Chronic , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Mice , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/immunology , Male , Mice, Inbred C57BL , Disease Models, Animal , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Apoptosis
4.
Front Pediatr ; 12: 1400319, 2024.
Article in English | MEDLINE | ID: mdl-38895190

ABSTRACT

This study represents the first documentation of the coexistence of complete androgen insensitivity syndrome (CAIS) with Müllerian duct remnants (MDRs) in mainland China. Additionally, we provide a comprehensive review of the existing literature concerning CAIS with MDRs resulting from androgen receptor (AR) gene mutations. This study broadens the clinical spectrum of CAIS and offer novel insights for further exploration into Müllerian duct regression. A 14-year-old patient, initially raised as female, presented to the clinic with complaints of "primary amenorrhea." Physical examination revealed the following: armpit hair (Tanner stage 2), breast development (Tanner stage 4 with bilateral breast nodule diameter of 7 cm), sparse pubic hair (Tanner stage 3), clitoris measuring 0.8 cm × 0.4 cm, separate urethral and vaginal openings, and absence of palpable masses in the bilateral groin or labia majora. The external genital virilization score was 0 points. Serum follicle-stimulating hormone level was 13.43 IU/L, serum luteinizing hormone level was 31.24 IU/L, and serum testosterone level was 14.95 nmol/L. Pelvic magnetic resonance imaging (MRI) did not reveal a uterus or bilateral fallopian tubes, but nodules on both sides of the pelvic wall indicated cryptorchidism. The karyotype was 46,XY. Genetic testing identified a maternal-derived hemizygous variation c.2359C > T (p.Arg787*) in the AR gene. During abdominal exploration, dysplastic testicles and a dysplastic uterus were discovered. Histopathological analysis revealed the presence of fallopian tube-like structures adjacent to the testicles. The CAIS patient documented in this study exhibited concurrent MDRs, thus expanding the spectrum of clinical manifestations of AIS. A review of prior literature suggests that the incidence of CAIS combined with histologically MDRs is not uncommon. Consequently, the identification of MDRs in AIS cases may represent an integral aspect of clinical diagnosis for this condition.

5.
J Agric Food Chem ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943592

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.

6.
Cell Death Dis ; 15(6): 434, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898023

ABSTRACT

The interaction between glioblastoma cells and glioblastoma-associated macrophages (GAMs) influences the immunosuppressive tumor microenvironment, leading to ineffective immunotherapies. We hypothesized that disrupting the communication between tumors and macrophages would enhance the efficacy of immunotherapies. Transcriptomic analysis of recurrent glioblastoma specimens indicated an enhanced neuroinflammatory pathway, with CXCL12 emerging as the top-ranked gene in secretory molecules. Single-cell transcriptome profiling of naïve glioblastoma specimens revealed CXCL12 expression in tumor and myeloid clusters. An analysis of public glioblastoma datasets has confirmed the association of CXCL12 with disease and PD-L1 expression. In vitro studies have demonstrated that exogenous CXCL12 induces pro-tumorigenic characteristics in macrophage-like cells and upregulated PD-L1 expression through NF-κB signaling. We identified CXCR7, an atypical receptor for CXCL12 predominantly present in tumor cells, as a negative regulator of CXCL12 expression by interfering with extracellular signal-regulated kinase activation. CXCR7 knockdown in a glioblastoma mouse model resulted in worse survival outcomes, increased PD-L1 expression in GAMs, and reduced CD8+ T-cell infiltration compared with the control group. Ex vivo T-cell experiments demonstrated enhanced cytotoxicity against tumor cells with a selective CXCR7 agonist, VUF11207, reversing GAM-induced immunosuppression in a glioblastoma cell-macrophage-T-cell co-culture system. Notably, VUF11207 prolonged survival and potentiated the anti-tumor effect of the anti-PD-L1 antibody in glioblastoma-bearing mice. This effect was mitigated by an anti-CD8ß antibody, indicating the synergistic effect of VUF11207. In conclusion, CXCL12 conferred immunosuppression mediated by pro-tumorigenic and PD-L1-expressing GAMs in glioblastoma. Targeted activation of glioblastoma-derived CXCR7 inhibits CXCL12, thereby eliciting anti-tumor immunity and enhancing the efficacy of anti-PD-L1 antibodies.


Subject(s)
B7-H1 Antigen , Chemokine CXCL12 , Glioblastoma , Receptors, CXCR , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Animals , Receptors, CXCR/metabolism , Receptors, CXCR/genetics , Chemokine CXCL12/metabolism , Mice , B7-H1 Antigen/metabolism , Cell Line, Tumor , Tumor Microenvironment , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Signal Transduction/drug effects
7.
Adv Mater ; : e2404411, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837809

ABSTRACT

Antibiotic-resistant pathogens have become a global public health crisis, especially biofilm-induced refractory infections. Efficient, safe, and biofilm microenvironment (BME)-adaptive therapeutic strategies are urgently demanded to combat antibiotic-resistant biofilms. Here, inspired by the fascinating biological structures and functions of phages, the de novo design of a spiky Ir@Co3O4 particle is proposed to serve as an artificial phage for synergistically eradicating antibiotic-resistant Staphylococcus aureus biofilms. Benefiting from the abundant nanospikes and highly active Ir sites, the synthesized artificial phage can simultaneously achieve efficient biofilm accumulation, extracellular polymeric substance (EPS) penetration, and superior BME-adaptive reactive oxygen species (ROS) generation, thus facilitating the in situ ROS delivery and enhancing the biofilm eradication. Moreover, metabolomics found that the artificial phage obstructs the bacterial attachment to EPS, disrupts the maintenance of the BME, and fosters the dispersion and eradication of biofilms by down-regulating the associated genes for the biosynthesis and preservation of both intra- and extracellular environments. The in vivo results demonstrate that the artificial phage can treat the biofilm-induced recalcitrant infected wounds equivalent to vancomycin. It is suggested that the design of this spiky artificial phage with synergistic "penetrate and eradicate" capability to treat antibiotic-resistant biofilms offers a new pathway for bionic and nonantibiotic disinfection.

8.
Fa Yi Xue Za Zhi ; 40(2): 112-117, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847024

ABSTRACT

Dental age estimation is a crucial aspect and one of the ways to accomplish forensic age estimation, and imaging technology is an important technique for dental age estimation. In recent years, some studies have preliminarily confirmed the feasibility of magnetic resonance imaging (MRI) in evaluating dental development, providing a new perspective and possibility for the evaluation of dental development, suggesting that MRI is expected to be a safer and more accurate tool for dental age estimation. However, further research is essential to verify its accuracy and feasibility. This article reviews the current state, challenges and limitations of MRI in dental development and age estimation, offering reference for the research of dental age assessment based on MRI technology.


Subject(s)
Age Determination by Teeth , Magnetic Resonance Imaging , Tooth , Humans , Age Determination by Teeth/methods , Magnetic Resonance Imaging/methods , Tooth/diagnostic imaging , Tooth/growth & development , Forensic Dentistry/methods
9.
Phytomedicine ; 131: 155771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851101

ABSTRACT

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Subject(s)
Cardiomyopathies , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cardiomyopathies/drug therapy , Sepsis/drug therapy , Sepsis/complications , Mice , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Lipoylation/drug effects , Rats , Oxidative Stress/drug effects , Cell Line , Lipopolysaccharides , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Interleukin-1beta/metabolism , Interleukin-18/metabolism
10.
Front Pharmacol ; 15: 1389768, 2024.
Article in English | MEDLINE | ID: mdl-38846089

ABSTRACT

Huanglian Wendan Decoction (HWD) is a traditional Chinese medicine (TCM) prescribed to patients diagnosed with insomnia, which can achieve excellent therapeutic outcomes. As positively modulating the γ-aminobutyric acid (GABA) type A receptors (GABAARs) is the most effective strategy to manage insomnia, this study aimed to investigate whether the activation of GABAARs is involved in the anti-insomnia effect of HWD. We assessed the metabolites of HWD using LC/MS and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and tested the pharmacological activity in vitro and in vivo using whole-cell patch clamp and insomnia zebrafish model. In HEK293 cells expressing α1ß3γ2L GABAARs, HWD effectively increased the GABA-induced currents and could induce GABAAR-mediated currents independent of the application of GABA. In the LC-MS (QToF) assay, 31 metabolites were discovered in negative ion modes and 37 metabolites were found in positive ion modes, but neither three selected active metabolites, Danshensu, Coptisine, or Dihydromyricetin, showed potentiating effects on GABA currents. 62 active metabolites of the seven botanical drugs were collected based on the TCMSP database and 19 of them were selected for patch-clamp verification according to the virtual docking simulations and other parameters. At a concentration of 100 µM, GABA-induced currents were increased by (+)-Cuparene (278.80% ± 19.13%), Ethyl glucoside (225.40% ± 21.77%), and ß-Caryophyllene (290.11% ± 17.71%). In addition, (+)-Cuparene, Ethyl glucoside, and ß-Caryophyllene could also serve as positive allosteric modulators (PAMs) and shifted the GABA dose-response curve (DRC) leftward significantly. In the PCPA-induced zebrafish model, Ethyl glucoside showed anti-insomnia effects at concentrations of 100 µM. In this research, we demonstrated that the activation of GABAARs was involved in the anti-insomnia effect of HWD, and Ethyl glucoside might be a key metabolite in treating insomnia.

11.
Front Oncol ; 14: 1361694, 2024.
Article in English | MEDLINE | ID: mdl-38846984

ABSTRACT

Background: Soft tissue tumors (STTs) are benign or malignant superficial neoplasms arising from soft tissues throughout the body with versatile pathological types. Although Ultrasonography (US) is one of the most common imaging tools to diagnose malignant STTs, it still has several drawbacks in STT diagnosis that need improving. Objectives: The study aims to establish this deep learning (DL) driven Artificial intelligence (AI) system for predicting malignant STTs based on US images and clinical indexes of the patients. Methods: We retrospectively enrolled 271 malignant and 462 benign masses to build the AI system using 5-fold validation. A prospective dataset of 44 malignant masses and 101 benign masses was used to validate the accuracy of system. A multi-data fusion convolutional neural network, named ultrasound clinical soft tissue tumor net (UC-STTNet), was developed to combine gray scale and color Doppler US images and clinic features for malignant STTs diagnosis. Six radiologists (R1-R6) with three experience levels were invited for reader study. Results: The AI system achieved an area under receiver operating curve (AUC) value of 0.89 in the retrospective dataset. The diagnostic performance of the AI system was higher than that of one of the senior radiologists (AUC of AI vs R2: 0.89 vs. 0.84, p=0.022) and all of the intermediate and junior radiologists (AUC of AI vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; p <0.01). The AI system also achieved an AUC of 0.85 in the prospective dataset. With the assistance of the system, the diagnostic performances and inter-observer agreement of the radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63 to 0.69; p<0.01). Conclusion: The AI system could be a useful tool in diagnosing malignant STTs, and could also help radiologists improve diagnostic performance.

13.
Future Sci OA ; 10(1): FSO926, 2024.
Article in English | MEDLINE | ID: mdl-38827800

ABSTRACT

Aim: This population-based analysis aimed to explore the associations among marital status, prognosis and treatment of stage I non-small-cell lung cancer. Materials & methods: The propensity score matching (PSM), logistic regression and Cox proportional hazards model were used in this study. Results: A total of 13,937 patients were included. After PSM, 10579 patients were co-insured. The married were more likely to receive surgical treatment compared with the unmarried patients (OR: 1.841, p < 0.001), and patients who underwent surgery also tended to have better survival (HR: 0.293, p < 0.001). Conclusion: Compared with unmarried patients, a married group with stage I NSCLC had timely treatment and more satisfactory survival. This study highlights the importance of prompt help and care for unmarried patients.

14.
Plant Commun ; : 101010, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918950

ABSTRACT

Genome-wide association study (GWAS) identifies trait-associated loci, but due in part to slow decay of linkage disequilibrium (LD), identifying the causal genes can be a bottleneck. Transcriptome-wide association study (TWAS) addresses this by identifying gene expression-phenotype associations or integrating gene expression quantitative trait loci (eQTLs) with GWAS results. Here, we used self-pollinated soybean (Glycine max [L.] Merr.) as a model to evaluate the application of TWAS in the genetic dissection of traits in plant species with slow LD decay. We generated RNA-Seq data of a soybean diversity panel, and identified the genetic expression regulation of 29,286 genes in soybean. Different TWAS solutions were less affected by LD and robust with source of expression that identified known genes related to traits from different development stages and tissues. A novel gene named pod color L2 was identified via TWAS and functionally validated by genome editing. By introducing the new exon proportion feature, we significantly improved the detection of expression variations resulting from structural variations and alternative splicing. As a result, the genes identified by our TWAS approach exhibited a diverse range of causal variations, including SNP, insertion/deletion, gene fusion, copy number variation, and alternative splicing. Using our TWAS approach, we identified genes associated with flowering time, including both previously known genes and novel genes that had not previously linked to this trait before, providing complementary insights with GWAS. In summary, this study supports the application of TWAS for candidate gene identification in species with low rates of LD decay.

15.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
16.
Oncogene ; 43(27): 2115-2131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773262

ABSTRACT

Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.


Subject(s)
Mitophagy , Neoplastic Stem Cells , Receptor, IGF Type 1 , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Mitophagy/genetics , Animals , Mice , Disease Progression , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Cell Survival/genetics
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750769

ABSTRACT

The 5-year survival for non-small cell lung cancer (NSCLC) remains <20 %, primarily due to the early symptoms of lung cancer are inconspicuous. Prompt identification and medical intervention could serve as effective strategies for mitigating the death rate. We therefore set out to identify biomarkers to help diagnose NSCLC. CircRNA microarray and qRT-PCR reveal that sputum circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC, which can enhance the proliferation and clone formation, regulate the cell cycle, and accelerate the migration and invasion of NSCLC cells. Circ_0006949 and miR-4673 are predominantly co-localized in the cytoplasm of NSCLC cell lines and tissues; it upregulates GLUL by adsorption of miR-4673 through competing endogenous RNAs mechanism. The circ_0006949/miR-4673/GLUL axis exerts pro-cancer effects in vitro and in vivo. Circ_0006949 can boost GLUL catalytic activity, and they are highly expressed in NSCLC tissues and correlate with poor prognosis. In summary, circ_0006949 is a potential biomarker for the early diagnosis and therapy of NSCLC. This novel sputum circRNA is statistically more predictive than conventional serum markers for NSCLC diagnosis. Non-invasive detection of patients with early-stage NSCLC using sputum has shown good potential for routine diagnosis and possible screening.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Animals , Cell Line, Tumor , Mice , Male , Female , Cell Movement/genetics , Mice, Nude , Sputum/metabolism
18.
ACS Appl Mater Interfaces ; 16(20): 25856-25868, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726921

ABSTRACT

Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1ß, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Photoacoustic Techniques , Animals , Macrophages/metabolism , Mice , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/therapy , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Copper/chemistry , Copper/pharmacology
19.
Transl Neurosci ; 15(1): 20220334, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38623573

ABSTRACT

Background: Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR. Method: We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting. Results: Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR. Conclusion: Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.

20.
Article in English | MEDLINE | ID: mdl-38652005

ABSTRACT

Two Gram-negative, aerobic, rod-shaped bacterial strains, 7MK25T and 6Y81T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain 7MK25T showed the highest similarity (93.6 %) to Methyloferula stellata AR4T, followed by Bosea thiooxidans DSM 9653T (93.3 %). Strain 6Y81T had the highest similarity of 97.9 % to Lichenibacterium minor RmlP026T, followed by Lichenibacterium ramalinae RmlP001T (97.2 %). Phylogenomic analysis using the UBCG and PhyloPhlAn methods consistently showed that strain 7MK25T formed a sister clade to Boseaceae, while strain 6Y81T formed an independent clade within the genus Lichenibacterium, both in the order Hyphomicrobiales. The digital DNA-DNA hybridization and average nucleotide identity values between strains 7MK25T, 6Y81T and their close relatives were in the ranges of 19.1-29.9 % and 72.5-85.5 %, respectively. The major fatty acids of 7MK25T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C16 : 0 and C17 : 0 cyclo, while those of 6Y81T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0 and C16 : 0 3-OH. Strains 7MK25T and 6Y81T took diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as their dominant polar lipids, and Q-10 as their major respiratory quinone. On the basis of phenotypic and phylogenetic data, strain 7MK25T is proposed to represent a novel species of a novel genus with name Terrirubrum flagellatum gen. nov., sp. nov., within a novel family Terrirubraceae fam. nov., with 7MK25T (=KCTC 62738T=GDMCC 1.1452T) as its type strain. Strain 6Y81T represents a novel species in the genus Lichenibacterium, for which the name Lichenibacterium dinghuense sp. nov. (type strain 6Y81T=KACC 21 727T=GDMCC 1.2176T) is proposed. Rhodoblastaceae fam. nov. with Rhodoblastus as the type genus is also proposed to solve the non-monophylectic problem of the family Roseiarcaceae.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Forests , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Ubiquinone
SELECTION OF CITATIONS
SEARCH DETAIL
...