Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 97(8): 3426-3439, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31233597

ABSTRACT

This study was conducted to investigate the effects of Clostridium butyricum addition to diets in late gestation and lactation on the reproductive performance and gut microbiota for sows. A total of 180 healthy Landrace × Yorkshire sows at 90 d of gestation were randomly assigned to one of four groups, with 45 replicates per group, receiving a basal commercial diet (Control, 0% C. butyricum) or diet added with 0.1% C. butyricum (1 × 108 CFU/kg of feed), 0.2% C. butyricum (2 × 108 CFU/kg of feed), 0.4% C. butyricum (4 × 108 CFU/kg of feed), respectively. The experiment was conducted from 90 d of gestation to weaning at 21 d of lactation. The results showed that the interval between piglet born was linearly (P < 0.05) decreased, and the duration of farrowing was significantly (quadratic, P < 0.05) shortened as C. butyricum addition increased. There was a linear (P < 0.05) increase in litter weight at weaning and litter weight gain. The concentrations of IgG and IgM in colostrum, and IgM in milk were linearly increased (P < 0.05) as C. butyricum addition. Serum MDA concentrations of sows at parturition and 14 d in lactation, and piglets at 14 and 21 d of age were linearly (P < 0.05) decreased, respectively. The serum total antioxidant capacity concentrations of sows at parturition and 14 and 21 d in lactation, and piglets at 14 and 21 d of age were linearly (P < 0.05) increased as C. butyricum addition, respectively. There was a linear decrease in the serum endotoxin concentration of sows on 21 d in lactation (P < 0.05). The serum cortisol concentrations of piglets at 14 and 21 d of age were both significantly (quadratic, P < 0.05) decreased. The 0.2% C. butyricum increased the relative abundance of Bacteroidetes (P = 0.016) at phylum level, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotellaceae_UCG-003, Prevotella_9, Alloprevotella (P < 0.05) at genus level, and decreased the relative abundance of Proteobacteria, Gemmatimonadetes, Actinobacteria (P < 0.001) at phylum level, and Clostridium_sensu_stricto_1, Streptococcus, Escheruchia-Shigella, Sphingomonas, Succinivibrio (P < 0.05) at genus level and Firmicutes/Bacteroidetes ratio (P = 0.020). In conclusion, the present research indicated that dietary addition with C. butyricum could shorten the duration of farrowing and enhance the growth performance of suckling piglets. Moreover, 0.2% C. butyricum administration to sows changed the composition of intestinal microbiota, especially increased the relative abundance of Prevotella.


Subject(s)
Animal Feed/analysis , Clostridium butyricum/physiology , Gastrointestinal Microbiome , Reproduction , Swine/microbiology , Animals , Antioxidants/analysis , Colostrum/immunology , Diet/veterinary , Female , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Intestines/microbiology , Lactation , Milk/immunology , Parturition , Pregnancy , Swine/immunology , Weaning , Weight Gain/drug effects
2.
Gene Ther ; 19(5): 561-9, 2012 May.
Article in English | MEDLINE | ID: mdl-21938019

ABSTRACT

Mutations of the LAMB3 gene cause a lethal form of junctional epidermolysis bullosa (JEB). We hypothesized that early intra-amniotic gene transfer in a severe murine model of JEB would improve or correct the skin phenotype. Time-dated fetuses from heterozygous LAMB3(IAP) breeding pairs underwent ultrasound guided intra-amniotic injection of lentiviral vector encoding the murine LAMB3 gene at embryonic day 8 (E8). Gene expression was monitored by immunohistochemistry. The transgenic laminin-ß3 chain was shown to assemble with its endogenous partner chains, resulting in detectable amounts of laminin-332 in the basement membrane zone of skin and mucosa. Ultrastructually, the restoration of ∼60% of hemidesmosomal structures was also noted. Although we could correct the skin phenotype in 11.9% of homozygous LAMB3(IAP) mice, none survived beyond 48 h. However, skin transplants from treated E18 homozygous LAMB3(IAP) fetuses maintained normal appearance for 6 months with persistence of normal assembly of laminin-332. These results demonstrate for the first time long-term phenotypic correction of the skin pathology in a severe model of JEB by in vivo prenatal gene transfer. Although survival remained limited due to the limitations of this mouse model, this study supports the potential for treatment of JEB by prenatal gene transfer.


Subject(s)
Amnion , Cell Adhesion Molecules/genetics , Epidermolysis Bullosa, Junctional/therapy , Gene Transfer Techniques , Genetic Therapy/methods , Skin/pathology , Amnion/metabolism , Animals , Cell Adhesion Molecules/metabolism , Disease Models, Animal , Epidermolysis Bullosa, Junctional/pathology , Genetic Vectors , Lentivirus/genetics , Mice , Phenotype , Skin/metabolism , Kalinin
SELECTION OF CITATIONS
SEARCH DETAIL
...