Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 46(8): e14196, 2022 08.
Article in English | MEDLINE | ID: mdl-35527362

ABSTRACT

Oxidative stress-induced dysfunction of nerve cells has been implicated as a crucial cause of cell death in neurodegenerative diseases. In Asian countries, herbs, such as Angelica sinensis (Oliv.) Diels (DG) and Rehmannia glutinosa (Gaertn.) DC. (SDH), have long be considered to have antiaging abilities. The herbs act as neuro protectants that rescue nerve cells from oxidative stress damage and apoptosis. Thus, developing herbal formulas can potentially lead to new treatments for neurodegenerative diseases. In this study, we compared the effective active components and antioxidant properties of extractive of DG and SDH (DG-SDH) when formulated at different ratios. DG-SDH formulated at a ratio of 3:2 (DG-SDH [3:2]) produced the highest content of polysaccharides, polyphenols, and flavonoids. It also showed the best ability in removing DPPH and hydroxyl free radicals compared to single herb or other compounding ratio. The antioxidant activity of DG-SDH (3:2) showed best synergistic effects in scavenging activity assays of DPPH free radicals and hydroxyl free radicals. DG-SDH (3:2) could increase the cell viability of SHSY-5Y cells, PC-12 cells, and BV-2 cells. In particular, DG-SDH (3:2) protected SHSY-5Y cells from H2 O2 -induced cell injury by inhibiting excessive expression of reactive oxygen species (ROS), reducing the rate of apoptosis and restoring mitochondrial membrane potential. Actin-Tracker Green and DAPI staining and fluorescence microscope observation confirmed that DG-SDH (3:2) helped in preserving cell morphology under oxidative stress. These findings support that DG-SDH (3:2) promote the neuroprotection against hydrogen peroxide and can serve as a novel therapy for neurodegenerative diseases. PRACTICAL APPLICATIONS: This is the first study to investigate DG and SDH interaction between effective ingredients. These findings support that DG-SDH (3:2) has the best synergistic effects in antioxidant activity and promote the neuroprotection against hydrogen peroxide. Hence, DG-SDH (3:2) will be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for neurodegenerative diseases.


Subject(s)
Angelica sinensis , Rehmannia , Angelica sinensis/chemistry , Antioxidants/pharmacology , Hydrogen Peroxide/toxicity , Hydroxyl Radical , Protective Agents
2.
ACS Omega ; 5(7): 3478-3486, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32118162

ABSTRACT

The highly thermally and chemically stable imidazole framework ZIF-8 samples were separately postmodified with amine groups by using N,N'-dimethylethylenediamine (MMEN) and N,N-dimethylaminoethylamine (MAEA), which had the same molecular formula but different structures. The modified ZIF-8 samples (ZIF-8@amine) were thoroughly characterized, including powder X-ray diffractometry, Fourier-transformed infrared spectroscopy, and physical adsorption at 77 K by nitrogen, thermogravimetric analysis, and photophysical characterization. Results showed that after modification, the Brunauer-Emmett-Teller surface area and total pore volume both increased, almost one time higher than those of the original ZIF-8 sample, and followed the order: ZIF-8-MMEN > ZIF-8-MAEA > ZIF-8. Furthermore, the N-H group was successfully grafted into the modified ZIF-8 samples. To examine the sensing properties of the modified ZIF-8@amine samples toward the breath biomarkers of lung cancer, five potential volatile organic compound biomarkers were used as analytes. ZIF-8-MMEN and ZIF-8-MAEA revealed a unique capacity for sensing hexanal, ethylbenzene, and 1-propanol with high efficiency and sensitivity. The three samples all did not show sensing ability toward styrene and isoprene. In addition, ZIF-8, ZIF-8-MMEN, and ZIF-8-MAEA all can sense hexanal with a detection limit as low as 1 ppb.

3.
J Colloid Interface Sci ; 317(1): 62-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17920616

ABSTRACT

The composite particles with core/shell structure resulting from the combination of silica seed and hydrophobic copolymer (dodecafluoroheptyl methacrylate (DFMA), gamma-methacryloxypropyltriisopropoxidesilane (MAPTIPS), methyl methacrylate, butyl acrylate) were synthesized by emulsion polymerization. The amount of the silica seeds, concentration of reactive surfactant, as well as the addition of DFMA and MAPTIPS, have strong influences on the morphology of composite particles. It has been shown that it would be possible to produce stable organic/inorganic composite particles with inhomogeneous core/shell structure encapsulated by hydrophobic fluorinated acrylate even though using unmodified silica particles and admixture of anionic and nonionic surfactants. However, there was an obvious difference on the morphologies of core-shell structure whether the DFMA and MAPTIPS were added or not. It was concluded that two kinds of polymerization approaches might coexist in the presence of DFMA and MAPTIPS for raw silica. One clear advantage of this process is that there is only one silica bead for each composite particle. This kind of stable core-shell structural hybrid latex is useful for preparing high performance hydrophobic coating.


Subject(s)
Silicon Dioxide/chemistry , Siloxanes , Surface-Active Agents/chemistry , Anions/chemistry , Emulsions , Hydrogen-Ion Concentration , Molecular Structure , Particle Size , Siloxanes/chemical synthesis , Siloxanes/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...