Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Medicine (Baltimore) ; 103(20): e38125, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758889

ABSTRACT

Cancer stem cells (CSCs) are a subset of cells with self-renewal ability and tumor generating potential. Accumulated evidence has revealed that CSCs were shown to contribute to tumorigenesis, metastasis, recurrence and resistance to chemoradiotherapy. Therefore, CSCs were regarded as promising therapeutic targets in cancer. This study is the first to reveal the development process, research hotspots, and trends of entire CSCs research field through bibliometric methods. All relevant publications on CSCs with more than 100 citations (notable papers) and the 100 most cited papers (top papers) during 1997 to 2023 were extracted and analyzed. Cancer research published the largest number of papers (184 papers). The USA accounted for the most publications (1326 papers). Rich, JN was the author with the most publications (56 papers) and the highest M-index (3.111). The most contributive institution was the University of Texas System (164 papers). Before 2007, research mainly focused on the definition and recognition of CSCs. Between 2007 and 2016, with the emergence of the terms such as "sonic hedgehog," "metabolism," "oxidative phosphorylation," and "epithelial mesenchymal transition," research began to shift toward exploring the mechanisms of CSCs. In 2016, the focus transitioned to the tumor microenvironment and the ecological niches. The analysis of papers published in major journals since 2021 showed that "transcription," "inhibition," and "chemoresistance" emerged as new focused issues. In general, the research focus has gradually shifted from basic biology to clinical transformation. "Tumor microenvironment" and "chemo-resistance" should be given more attention in the future.


Subject(s)
Bibliometrics , Biomedical Research , Neoplastic Stem Cells , Humans , Biomedical Research/trends , Neoplasms/pathology , Neoplasms/therapy , Tumor Microenvironment
2.
Front Endocrinol (Lausanne) ; 15: 1379607, 2024.
Article in English | MEDLINE | ID: mdl-38686204

ABSTRACT

Background: Hepatobiliary cancer (HBC), including hepatocellular carcinoma (HCC) and biliary tract cancer (BTC), is currently one of the malignant tumors that mainly cause human death. Many HBCs are diagnosed in the late stage, which increases the disease burden, indicating that effective prevention strategies and identification of risk factors are urgent. Many studies have reported the role of thyroid hormones on HBC. Our research aims to assess the causal effects and investigate the mediation effects between thyroid function and HBC. Methods: Utilizing the Mendelian randomization (MR) approach, the study employs single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to explore causal links between thyroid function [free thyroxine (FT4), thyroid stimulating hormone (TSH), hyperthyroidism and hypothyroidism] and HBC. Data were sourced from the ThyroidOmic consortium and FinnGen consortium. The analysis included univariable and multivariable MR analysis, followed by mediation analysis. Results: The study found a significant causal association between high FT4 levels and the reduced risk of BTC, but not HCC. However, TSH, hyperthyroidism and hypothyroidism had no causal associations with the risk of HBC. Notably, we also demonstrated that only higher FT4 levels with the reference range (FT4-RR) could reduce the risk of BTC because this protective effect no longer existed under the conditions of hyperthyroidism or hypothyroidism. Finally, we found that the protective effect of FT4-RR on BTC was mediated partially by decreasing the risk of metabolic syndrome (MetS) and reducing the waist circumference (WC). Conclusion: The findings suggest that higher FT4-RR may have a protective effect against BTC, which is partially mediated by decreased risk of MetS and a reduction in WC. This study highlights the potential role of FT4 in the pathogenesis of BTC and underscores that MetS and WC may play mediation effects as two mediators in this process.


Subject(s)
Biliary Tract Neoplasms , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Thyroxine , Humans , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/blood , Biliary Tract Neoplasms/epidemiology , Biliary Tract Neoplasms/prevention & control , Thyroxine/blood , Mediation Analysis , Risk Factors , Hypothyroidism/genetics , Hypothyroidism/blood , Female , Male , Hyperthyroidism/genetics , Hyperthyroidism/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/etiology
3.
Commun Biol ; 6(1): 744, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464027

ABSTRACT

Adenosine-to-inosine tRNA-editing enzyme has been identified for more than two decades, but the study on its DNA editing activity is rather scarce. We show that amphioxus (Branchiostoma japonicum) ADAT2 (BjADAT2) contains the active site 'HxE-PCxxC' and the key residues for target-base-binding, and amphioxus ADAT3 (BjADAT3) harbors both the N-terminal positively charged region and the C-terminal pseudo-catalytic domain important for recognition of substrates. The sequencing of BjADAT2-transformed Escherichia coli genome suggests that BjADAT2 has the potential to target E. coli DNA and can deaminate at TCG and GAA sites in the E. coli genome. Biochemical analyses further demonstrate that BjADAT2, in complex with BjADAT3, can perform A-to-I editing of tRNA and convert C-to-U and A-to-I deamination of DNA. We also show that BjADAT2 preferentially deaminates adenosines and cytidines in the loop of DNA hairpin structures of substrates, and BjADAT3 also affects the type of DNA substrate targeted by BjADAT2. Finally, we find that C89, N113, C148 and Y156 play critical roles in the DNA editing activity of BjADAT2. Collectively, our study indicates that BjADAT2/3 is the sole naturally occurring deaminase with both tRNA and DNA editing capacity identified so far in Metazoa.


Subject(s)
Lancelets , Animals , Lancelets/genetics , Lancelets/metabolism , Deamination , Escherichia coli/genetics , Escherichia coli/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA, Transfer/metabolism , Adenosine/metabolism , DNA/genetics , Inosine/genetics
4.
Front Oncol ; 13: 965166, 2023.
Article in English | MEDLINE | ID: mdl-37182125

ABSTRACT

The liver is the most common and lethal metastatic site in patients with extensive-stage small-cell lung cancer (ES-SCLC), and median survival with current standard treatment is only 9-10 months from diagnosis. Clinical observations show that a complete response (CR) is extremely rare in ES-SCLC patients with liver metastasis. Moreover, to the best of our knowledge, complete regression of liver metastasis induced by the abscopal effect, boosted primarily by permanent radioactive iodine-125 seeds implantation (PRISI), combined with a low-dose metronomic temozolomide (TMZ) regimen, has not been recorded. Here, we present the case of a 54-year-old male patient who developed multiple liver metastases from ES-SCLC after multiple lines of chemotherapy. The patient was given partial PRISI therapy (two out of six tumor lesions; 38 iodine-125 seeds in one dorsal lesion and 26 seeds in one ventral lesion), which was combined with TMZ metronomic chemotherapy (50 mg/m2/day, days 1-21, every 28 days). The abscopal effect was observed for 1 month after PRISI treatment. After about 1 year, all the liver metastases had completely disappeared, and the patient experienced no relapse. The patient eventually died of malnutrition caused by a non-tumor intestinal obstruction and had an overall survival of 58.5 months after diagnosis. PRISI combined with TMZ metronomic chemotherapy might be considered a potential therapy to trigger the abscopal effect in patients with liver metastases.

5.
Front Microbiol ; 14: 1321386, 2023.
Article in English | MEDLINE | ID: mdl-38298540

ABSTRACT

Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.

6.
Front Immunol ; 13: 1032747, 2022.
Article in English | MEDLINE | ID: mdl-36532038

ABSTRACT

​Background: Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis aims to present the research trends on lung cancer immunotherapy. Method: On 1 July, 2022, the authors identified 2,941 papers on lung cancer immunotherapy by the Web of Science and extracted their general information and the total number of citations. A bibliometric analysis was carried out to present the research landscape, demonstrate the research trends, and determine the most cited papers (top papers) as well as major journals on lung cancer immunotherapy. After that, recent research hotspots were analyzed based on the latest publications in major journals. Results: These 2,941 papers were cited a total of 122,467 times. "Nivolumab vs. docetaxel in advanced non-squamous non-small-cell lung cancer" published in 2015 by Borghaei H et al. was the most cited paper (5,854 citations). Among the journals, New England Journal of Medicine was most influential. Corresponding authors represented China took part in most articles (904) and papers with corresponding authors from the USA were most cited (139.46 citations per paper). Since 2015, anti-PD-(L)1 has become the hottest research area. Conclusions: This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on thousands of publications, and further suggests future research directions. Moreover, the results can benefit researchers to select journals and find potential collaborators. This study can help researchers get a comprehensive impression of the research landscape, historical development, and recent hotspots in lung cancer immunotherapy and provide inspiration for further research.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Bibliometrics , Publications , Immunotherapy
7.
Chem Biodivers ; 19(12): e202200401, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36210339

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Liver/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Liver Cirrhosis/drug therapy , Fibrosis
8.
Dev Comp Immunol ; 126: 104238, 2022 01.
Article in English | MEDLINE | ID: mdl-34428528

ABSTRACT

Previous studies have shown that protein disulfide isomerase (PDI), a member of the thioredoxin (TRX) superfamily, are broadly associated with immune responses in a variety of animals. However, it remains largely unknown about the direct roles of PDIs during a bacterial infection. In this study, we identified the presence of a single pdi gene in the amphioxus Branchiostoma japonicum, Bjpdi. The deduced protein BjPDI is structurally characterized by the presence of four Trx-like domains in the order of a, b, b' and a' and a short acidic C-terminal tail, that are characteristic of PDIs. We demonstrated that rBjPDI displayed both thiol reductase and disulfide bond isomerase activities, indicating comparability of BjPDI with PDIs in term of enzymatic activities. We also showed that rBjPDI induced bacterial agglutination and exhibited a lectin-like activity capable of binding both bacteria (E. coli and S. aureus) and their signature molecules LPS and LTA. Furthermore, BjPDI could kill S. aureus via inducing membrane depolarization and intracellular ROS production in vitro, and treatment of amphioxus with a blocking anti-PDI antibody in vivo markedly reduced the survival rate of amphioxus following attack by S. aureus. Collectively, our study demonstrates that amphioxus protein disulfide isomerase acts as both an enzyme and an immunocompotent factor, and reports the specific function and mode of action of PDIs in immune responses.


Subject(s)
Lancelets , Protein Disulfide-Isomerases , Animals , Escherichia coli/metabolism , Lancelets/genetics , Lancelets/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Staphylococcus aureus , Thioredoxins
9.
Dev Comp Immunol ; 127: 104281, 2022 02.
Article in English | MEDLINE | ID: mdl-34601007

ABSTRACT

Cofilin-1 (Cfl1), a member of the ADF/cofilin family, has been identified as one of differentially expressed proteins in human dendritic cells challenged with lipopolysaccharide (LPS), suggesting that it may be involved in immune response. Here we showed that zebrafish cfl1 was markedly up-regulated by LPS and LTA treatment. We also showed that zebrafish recombinant Cfl1 (rCfl1) not only bound to the Gram-negative and positive bacteria A. hydrophila and S. aureus as well as their signature molecules LPS and LTA but also inhibited the growth of the bacteria. Moreover, we found that the heparin-binding motif-containing regions of Cfl1, i.e., Cfl19-25, Cfl134-51 and Cfl1108-125, like rCfl1, were also able to bind to LPS and LTA and to inhibit the bacterial growth. rCfl1, Cfl19-25, Cfl134-51, and Cfl1108-125 were all able to cause bacterial cell destruction, to induce membrane depolarization, and to stimulate intracellular ROS production. Finally, we showed that zebrafish Cfl1 could protect developing embryos/larvae against attack by the potential pathogen A. hydrophila. These data together indicate that zebrafish Cfl1 plays an immune-relevant role as a newly-characterized antimicrobial protein.


Subject(s)
Cofilin 1 , Zebrafish Proteins , Zebrafish , Actin Depolymerizing Factors , Animals , Anti-Bacterial Agents , Cofilin 1/genetics , Cofilin 1/metabolism , Staphylococcus aureus , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Front Oncol ; 12: 1024179, 2022.
Article in English | MEDLINE | ID: mdl-36698407

ABSTRACT

Background: Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis was intended to present research trends on melanoma immunotherapy. Method: On April 1, 2022, the authors identified 2,109 papers on melanoma immunotherapy using the Web of Science and extracted their general information and the total number of citations. The authors then conducted a bibliometric analysis to present the research landscape, clarify the research trends, and determine the most cited papers (top-papers) as well as major journals on melanoma immunotherapy. Subsequently, recent research hotspots were identified by analyzing the latest articles in major journals. Results: The total and median number of citations of these 2,109 papers on melanoma immunotherapy was 137,686 and 11, respectively. "Improved survival with ipilimumab in patients with metastatic melanoma" by Hodi et al. was the most cited paper (9,824 citations). Among the journals, the top-paper number (16), average citations per paper (2,510.7), and top-papers rate (100%) of New England Journal of Medicine were the highest. Corresponding authors represented the USA took part in most articles (784). Since 2016, the hottest research area has changed from CTLA-4 to PD-1. Conclusions: This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 2,109 relevant publications, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive impression of the research landscape, historical development, and current hotspots in melanoma immunotherapy and can provide inspiration for future research.

11.
Mar Life Sci Technol ; 3(3): 279-292, 2021 Aug.
Article in English | MEDLINE | ID: mdl-37073295

ABSTRACT

The vertebrate liver is regarded as an organ essential to the regulation of immunity and inflammation as well as being central to the metabolism of nutrients. Here, we discuss the functions that the hepatic cecum of amphioxus plays in the regulation of immunity and inflammation, and the molecular basis of this. It is apparent that the hepatic cecum performs important roles in the immunity of amphioxus including immune surveillance, clearance of pathogens and acute phase response. Therefore, the hepatic cecum, like the vertebrate liver, is an organ functioning as a key integrator of immunity in amphioxus.

12.
Mol Immunol ; 127: 57-66, 2020 11.
Article in English | MEDLINE | ID: mdl-32927165

ABSTRACT

Conventional role of ribosomal proteins is ribosome assembly and protein translation, but some ribosomal proteins also show antimicrobial peptide (AMP) activity, though their mode of action remains ill-defined. Here we demonstrated for the first time that amphioxus RPS15, BjRPS15, was a previously uncharacterized AMP, which was not only capable of identifying Gram-negative and -positive bacteria via interaction with LPS and LTA but also capable of killing the bacteria. We also showed that both the sequence and 3D structure of RPS15 and its prokaryotic homologs were highly conserved, suggesting its antibacterial activity is universal across widely separated taxa. Actually this was supported by the facts that the residues positioned at 45-67 formed the core region for the antimicrobial activity of BjRPS15, and its prokaryotic counterparts, including Nitrospirae RPS1933-55, Aquificae RPS1933-55 and P. syringae RPS1950-72, similarly displayed antibacterial activities. BjRPS15 functioned by both interaction with bacterial surface via LPS and LTA and membrane depolarization as well as induction of intracellular ROS. Moreover, we showed that RPS15 existed extracellularly in amphioxus, shrimp, zebrafish and mice, hinting it may play a critical role in systematic immunity in different animals. In addition, we found that neither BjRPS15 nor its truncated form BjRPS1545-67 were toxic to mammalian cells, making them promising lead molecules for the design of novel AMPs against bacteria. Collectively, these indicate that RPS15 is a new member of AMP with ancient origin and high conservation throughout evolution.


Subject(s)
Anti-Bacterial Agents/metabolism , Biological Evolution , Ribosomal Proteins/metabolism , Amino Acid Sequence , Animals , Bacteria/metabolism , Bacteria/ultrastructure , Cell Survival , Humans , Lancelets/microbiology , Ligands , Lipopolysaccharides , Membrane Potentials , Mice , Microbial Sensitivity Tests , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/ultrastructure , Teichoic Acids
13.
Dev Comp Immunol ; 110: 103730, 2020 09.
Article in English | MEDLINE | ID: mdl-32423862

ABSTRACT

Previous studies show that some ribosomal proteins possess antimicrobial peptide (AMP) activity. However, information as such remains rather fragmentary and rather limited. We showed here for the first time that amphioxus RPS23, BjRPS23, was a previously uncharacterized AMP. It not only acted as a pattern recognition receptor, capable of identifying LPS, LTA and PGN, but also an effector, capable of killing the Gram-negative and -positive bacteria. We also showed that the residues positioned at 67-84 formed the core region for the antimicrobial activity of BjRPS23, and its orthologues Verrucomicrobia RPS1268-85 and Thermotoga RPS1265-82 similarly displayed some antibacterial activities. BjRPS23 functioned by a combined action of membranolytic mechanisms including interaction with bacterial membrane via LPS, LTA and PGN, and membrane depolarization. BjRPS23 also stimulated production of intracellular ROS in bacteria. Moreover, we demonstrated that RPS23 existed across widely separated taxa, and might play a universal role in protection against bacterial infection in different animals. In addition, we found that neither BjRPS23 nor its truncated form BjRPS2367-84 were cytotoxic to mammalian cells, making them promising lead molecules for the design of novel peptide antibiotics against bacteria. Collectively, these indicate that RPS23 is a new member of AMP with ancient origin and high conservation.


Subject(s)
Bacterial Infections/immunology , Lancelets/genetics , Pore Forming Cytotoxic Proteins/genetics , Ribosomal Proteins/genetics , Animals , Anti-Bacterial Agents , Cloning, Molecular , Drug Discovery , Lancelets/immunology , Lipopolysaccharides/immunology , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/metabolism , Reactive Oxygen Species/metabolism , Ribosomal Proteins/metabolism
14.
Fish Shellfish Immunol ; 96: 97-106, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31805412

ABSTRACT

Inflammatory response is an innate host defense mechanism, and its regulation is essential for the host to get rid of harm by the excessive reactions. We first utilized proteomics approach to identify amphioxus humoral fluid proteins in response to LPS-induced inflammation. A total of 26 differentially expressed proteins, mainly involved in energy metabolism and cytoskeleton rearrangement processes, were identified between LPS-treated and control animals. Furthermore, we found a single uncharacterized protein (termed BjIM1) out of the most up-regulated ones, and examined its role in the regulation of immune and inflammatory responses. BjIM1 is predominantly expressed in the hepatic caecum, and its promoter sequence includes many binding sites for immune-relevant transcription factors. Importantly, recombinant BjIM1 (rBjIM1) is able to inhibit LPS-induced up-regulation of TLR pathway genes, such as MyD88, IKK, NF-κB1, Rel, p38, JNK and AP-1, indicating that BjIM1 may negatively regulate the TLR signaling pathway in amphioxus. Moreover, rBjIM1 also modulates the expression of genes involved in the interaction network of inflammation, energy metabolism and cytoskeleton rearrangement, including SIRT1, Rac1 and NOX2, in the LPS-induced inflammatory response in amphioxus. Collectively, our studies suggest that BjIM1 is an uncharacterized protein functioning as a modulator of inflammatory networks in amphioxus.


Subject(s)
Gene Expression/immunology , Immunity, Innate/genetics , Lancelets/genetics , Lancelets/immunology , Proteome/immunology , Animals , Proteomics
15.
Fish Shellfish Immunol ; 95: 688-696, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31683002

ABSTRACT

Previous studies have shown that heat shock proteins (Hsps) are broadly associated in immune responses in a variety of animals. However, it remains largely unknown about the direct roles of Hsps during a bacterial infection. In this study, we have cloned and characterized the cDNAs of two Hsp genes in the amphioxus Branchiostoma japonicum, termed Bjhsp5 and Bjhsp90α, the first ones in this evolutionarily important animal. Both Bjhsp5 and Bjhsp90α showed distinct tissue expression patterns, and were inducible by challenge with lipopolysaccharide (LPS) and lipoteichoic acid (LTA), suggesting they may be involved in anti-infectious responses. We also showed that both BjHsp5 and BjHsp90α displayed lectin-like property with affinity to both the Gram-negative and -positive bacteria as well as their signature molecules LPS and LTA, hinting they may both act as a pattern recognition receptor, capable of identifying pathogens. In addition, we found that BjHsp5 and BjHsp90α were both able to agglutinate the Gram-negative and -positive bacteria in the presence of Ca2+, suggesting they may be able to trap the invading pathogens together in vivo, avoiding them moving around and thereby protecting the host from pathogenic attack. These data provide a new angle to the roles of Hsps in immune defense.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Lancelets/genetics , Lectins, C-Type/genetics , Agglutination , Animals , HSP90 Heat-Shock Proteins/immunology , Heat-Shock Proteins/immunology , Immunity, Innate , Lancelets/immunology , Lectins, C-Type/immunology
16.
Mar Biotechnol (NY) ; 21(4): 448-462, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31053952

ABSTRACT

Klotho, a putative aging suppressor, shares sequence similarity with members of the glycosidase family 1. It has been identified in several vertebrate species, but only mouse Klotho has so far been proven to exhibit ß-glucuronidase activity. Thus, the argument that Klotho from animals other than mouse has glycosidase activity remains open. Moreover, little information is available regarding the structure-activity relationship of Klotho. Here, we demonstrate the presence of a single klotho gene in the amphioxus Branchiostoma japonicum, Bjklotho, which possesses two tandem domains named BjKL1 and BjKL2, and each of them has two glutamic acid residues that have been shown to be involved in the catalytic activity of family 1 glycosidase. Enzymatic activity assays of the recombinant proteins BjKL1 and BjKL2 revealed that only BjKL2 displayed ß-glucosidase activity, but BjKL1 did not. Structural analysis showed that there existed nine consecutive but not conserved residues in the ß6α6 loop, which affects the conformational form in the entrance to the catalytic pocket of BjKL1 and BjKL2, thereby leading to a subtle difference in the enzyme-substrate binding and interaction. Furthermore, the substitution of the nine residues 354QNRVDPNDT362 in BjKL1 by the residues 884EDNVVVGAA892 in BjKL2 resulted in significant increase in ß-glucosidase activity in the BjKL1 mutant. Our results indicate that BjKL2 possesses ß-glucosidase, the first data as such in invertebrates. We also identify, for the first time, the residues 884EDNVVVGAA892 in BjKL2 a sequence critical and indispensable for glucosidase.


Subject(s)
Glucuronidase/chemistry , Lancelets/enzymology , Amino Acid Sequence , Amino Acid Substitution , Animals , Catalytic Domain , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Klotho Proteins , Lancelets/genetics , Mice , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Structure-Activity Relationship , Substrate Specificity
17.
Dev Comp Immunol ; 89: 31-43, 2018 12.
Article in English | MEDLINE | ID: mdl-30096337

ABSTRACT

Midkine (MK) and pleiotrophin (PTN) are the only two members of heparin-binding growth factor family. MK/PTN homologues found from Drosophila to humans are shown to have antibacterial activities and their antibacterial domains are conserved during evolution. However, little is known about MK/PTN homologue in the basal chordate amphioxus, and overall, information regarding MK/PTN homologues is rather limited in invertebrates. In this study, we identified a single MK/PTN homologue in Branchiostoma japonicum, termed BjMiple, which has a novel domain structure of PTN-PTNr1-PTNr2, and represents the ancestral form of vertebrate MK/PTN family proteins. BjMiple was expressed mainly in the ovary in a tissue-dependent fashion, and its expression was remarkably up-regulated following challenge with bacteria or their signature molecules LPS and LTA, suggesting its involvement in antibacterial responses. Functional assays revealed that BjMiple had strong antimicrobial activity, capable of killing a panel of Gram-negative and Gram-positive bacteria via a membranolytic mechanism, including interaction with bacterial membrane via LPS and LTA, membrane depolarization and high intracellular levels of ROS. Importantly, strong antibacterial activity was localized in PTN42-61 and PTNr142-66. Additionally, BjMiple and its derived peptides PTN42-61 and PTNr142-66 were not cytotoxic to human RBCs and mammalian cells. Taken together, our study suggests that amphioxus Miple is the ancestral type of vertebrate MK/PTN family homologues, and can play important roles as innate peptide antibiotics, which renders it a promising template for the design of novel peptide antibiotics against multi-drug resistant bacteria.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/immunology , Cytokines/genetics , Cytokines/immunology , Lancelets/genetics , Lancelets/immunology , Midkine/genetics , Midkine/immunology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Carrier Proteins/chemistry , Cytokines/chemistry , Evolution, Molecular , Hemolysis , Humans , Immunity, Innate/genetics , In Vitro Techniques , Ligands , Mice , Microbial Sensitivity Tests , Midkine/chemistry , Phylogeny , Protein Domains , RAW 264.7 Cells , Sequence Homology, Amino Acid
18.
Gene ; 618: 42-48, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28400271

ABSTRACT

Low-density lipoprotein receptor-related protein (LRP) is a group of important endocytic receptors contributing to binding ligands and maintaining internal environment. In this study, we identified a soluble LRP-like molecule in the amphioxus B. japonicum, BjLRP, with an uncharacterized domain structure combination of LY-EGF-CRD-EGF-CRD. It was mainly expressed in the gill, muscle, notochord and testis, and was significantly up-regulated following the challenge with bacteria. Recombinant BjLRP was capable of interacting with both Gram-negative and positive bacteria as well as PAMPs including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Interestingly, recombinant LY peptide was also able to bind to the Gram-negative and positive bacteria as well as the PAMPs LPS, LTA and PGN. By contrast, none of recombinant EGF1, EGF2, CRD1 and CRD2 had affinity to the bacteria and the PAMPs. In addition, BjLRPΔLY had no affinity to the PAMPs, although BjLRPΔLY showed slight affinity to the bacteria. These suggest that the interaction of BjLRP with the bacteria and PAMPs was primarily attributable to the LY domain. It is clear that BjLRP is a novel pattern recognition protein capable of identifying and interacting with invading bacteria in amphioxus.


Subject(s)
LDL-Receptor Related Proteins/genetics , Lancelets/genetics , Animals , LDL-Receptor Related Proteins/metabolism , Lancelets/metabolism , Lancelets/microbiology , Lipopolysaccharides/metabolism , Protein Binding
19.
Fish Shellfish Immunol ; 65: 1-8, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28366782

ABSTRACT

A complement system operating via the alternative pathway similar to that of vertebrates has been demonstrated in the primitive chordate amphioxus. However, the factor P (fP), a positive regulator of the alternative pathway, remains elusive in amphioxus to date. In this study, we identified and characterized a properdin gene in the amphioxus B. japonicum, BjfP, which represents an archetype of vertebrate properdins. Real-time PCR analysis showed that the BjfP was ubiquitously expressed and its expression was significantly up-regulated following the challenge with bacteria or lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Recombinant BjfP (rBjfP) and its truncated proteins including rTSR1-3, rTSR4-6 and rTSR7-8, were all capable of interacting with both Gram-negative and positive bacteria as well as LPS and LTA. Moreover, rBjfP, rTSR1-3 and rTSR4-6 could also specifically bind to C3b. Importantly, both rTSR1-3 and rTSR4-6 could inhibit the binding of rBjfP to C3b, and thus suppress the activation of the alternative pathway of complement, suggesting the involvement of BjfP in the alternative pathway. This is the first report showing that a properdin protein in invertebrates plays similar roles to vertebrate properdins. Collectively, these data suggest that BjfP might represent the ancient molecule from which vertebrate properdins evolved.


Subject(s)
Complement Pathway, Alternative/immunology , Lancelets/genetics , Lancelets/immunology , Properdin/genetics , Amino Acid Sequence , Animals , Complement Pathway, Alternative/genetics , Lancelets/classification , Phylogeny , Properdin/chemistry , Properdin/immunology , Real-Time Polymerase Chain Reaction/veterinary
20.
Fish Shellfish Immunol ; 63: 394-404, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27919759

ABSTRACT

Fish vitellogenin (Vg) has been shown to mediate the phagocytosis via interaction with a Fcγ-like phagocytic receptor on macrophages, but identification of such a receptor and its functional characterization remains lacking. In this study, we isolated a cDNA of polymeric immunoglobulin receptor (pIgR) from sea bass, which encoded a single-spanning transmembrane protein of 326 amino acids including a 21-amino acid signal peptide, an extracellular region, a transmembrane region and a 36-amino acid intracellular region included two Ig-like domains (ILDs), and was expressed in multiple lymphoid organs. We then showed that recombinant extracellular domain of sea bass pIgR was capable of binding to Vg as well as IgG and IgM. We also showed that Vg as well as IgG and IgM interacted with pIgR-expressing HEK 293T cells. Importantly, we demonstrated that Vg as well as IgG and IgM were all capable of enhancing phagocytosis by HEK 293T cells and inducing expression of tnf-α and il-1ß, via interacting with pIgR. Collectively, these results suggest that fish Vg, analogous to IgG and IgM, can interact with pIgR and result in similar down-stream immune responses, providing an additional evidence that Vg plays an antibody-like role.


Subject(s)
Bass/genetics , Bass/immunology , Fish Proteins/genetics , Gene Expression Regulation , Immunity, Innate , Receptors, Polymeric Immunoglobulin/genetics , Amino Acid Sequence , Animals , Bass/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , HEK293 Cells , Humans , Organ Specificity , Phylogeny , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Receptors, Polymeric Immunoglobulin/chemistry , Receptors, Polymeric Immunoglobulin/metabolism , Sequence Alignment/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...