Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Chemosphere ; : 142598, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871194

ABSTRACT

Soil dissolved organic matter (SDOM) is an important part of the DOM pool in terrestrial systems, influencing the transport and fate of many pollutants. In this study, SDOMs from different regions across China were compared by a series of spectroscopic methods, including UV‒vis spectroscopy, fluorescence spectroscopy, and Fourier transform infrared (FTIR) spectroscopy, and the hydrophobicity was quantified by partition coefficients of SDOM in the aqueous two-phase system (KATPS). The molecular weight, aromaticity, and hydrophobicity of SDOM from different regions exhibited strong heterogeneity, KATPS combined with UV‒vis and fluorescence indices can be readily used for differentiating heterogeneous SDOM, and SDOMs were compositionally and structurally different from DOMs in aquatic systems based on spectral characterization. Importantly, the two-phase system (TPS) model has only been validated by DOMs in freshwater systems, and good organic carbon‒water partition coefficient (KOC) predictive power (RMSE = 0.11) could be provided by the TPS model when applied to heterogeneous SDOM without calibration, showing its broad applicability. Our results demonstrate the applicability of the TPS model for predicting the sorption behavior of terrestrial DOM, broadening the application scope of the TPS model and indicating its potential as a routine model for the risk assessment of hydrophobic organic compounds (HOCs) in organic contaminated sites.

3.
Bull Environ Contam Toxicol ; 109(4): 592-599, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35635563

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-ß-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , 2-Hydroxypropyl-beta-cyclodextrin , Carbon , Manganese/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Potassium/analysis , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
Bull Environ Contam Toxicol ; 109(4): 585-591, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35536320

ABSTRACT

The concentrations of six priority phthalate esters (PAEs) in 700 soil samples and 110 sediment samples from an area in China containing plastic solid waste (PSW) recycling sites were determined. The total concentrations of the six PAEs in soil and sediment were not detected - 274 and not detected - 597 mg kg-1, respectively, and the mean concentrations in soil and sediment were 14.4 and 31.7 mg kg-1, respectively. The dominant PAEs were di(2-ethylhexyl) phthalate and di-n-butyl phthalate. PAEs were detected in soil collected from the surface to 0.5 m below ground level around the PSW recycling sites, and the concentrations were markedly higher in these areas than at other polluted sites. PSW recycling is an important source of PAEs to soil and sediment. The di(2-ethylhexyl)phthalate concentrations in soil were higher than the relevant concentrations that pose environmental risks for sensitive land uses and non-sensitive land uses (42 and 121 mg kg-1, respectively), indicating emissions of PAEs from PSW recycling sites may pose environmental risks. The results indicate that PAE pollution at PSW sites needs to be better controlled and managed.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , China , Dibutyl Phthalate , Esters , Plastics , Risk Assessment , Soil , Soil Pollutants/analysis , Solid Waste
5.
ACS ES T Water ; 2(12): 2367-2377, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-37552741

ABSTRACT

Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102-2.55×105 and 1.86 × 103-2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar-China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.

6.
Environ Pollut ; 255(Pt 2): 113312, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31610503

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), some of the most widespread organic contaminants, are highly toxic to soil microorganisms. Whether long-term polluted soils can still respond to the fresh input of pollutants is unknown. In this study, the soil enzyme activity, soil microbial community structure and function and microbial metabolism pathways were examined to systematically investigate the responses of soil microorganisms to fresh PAH stress. Microbial activity as determined by soil dehydrogenase and urease activity was inhibited upon microbe exposure to PAH stress. In addition, the soil microbial community and function were obviously shifted under PAH stress. Both microbial diversity and richness were decreased by PAH stress. Rhizobacter, Sphingobium, Mycobacterium, Massilia, Bacillus and Pseudarthrobacter were significantly affected by PAH stress and can be considered important indicators of PAH contamination in agricultural soils. Moreover, the majority of microbial metabolic function predicted to respond to PAH stress were affected adversely. Finally, soil metabolomics further revealed specific inhibition of soil metabolism pathways associated with fatty acids, carbohydrates and amino acids. Therefore, the soil metabolic composition distinctively changed, reflecting a change in the soil metabolism. In summary, fresh contaminant introduction into long-term polluted soils inhibited microbial activity and metabolism, which might profoundly affect the whole soil quality.


Subject(s)
Polycyclic Aromatic Hydrocarbons/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Agriculture , Biodegradation, Environmental , Environmental Pollutants , Metabolomics , Microbiota , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Pollutants/analysis
7.
Environ Pollut ; 242(Pt A): 692-699, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30029168

ABSTRACT

The concentrations, profiles, and spatial distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and sediment samples from several typical plastic solid waste (PSW) recovery sites (particularly from areas in which PSW is burned openly) in China were investigated. The results showed that burning PSW directly influenced PCDD/F concentrations immediately around the burning area. All of the samples in which soil contained black burning residue, collected from immediately around burning areas, had PCDD/F concentrations (mean 21708 ng kg-1) and toxic equivalent (TEQ) concentrations (mean 2140 ng I-TEQ kg-1 or 1877 ng WHO2006-TEQ kg-1) more than 100 times higher than the concentrations in samples collected away from burning areas (mean 222 ng kg-1, 8.75 ng I-TEQ kg-1, 7.96 ng WHO2006-TEQ kg-1). Principal component analysis and hierarchical cluster analysis indicated that the PCDD/F concentrations in seven soil samples from near PSW burning areas were influenced by PSW burning but that the PCDD/Fs in these soil samples may have had other or multiple sources. PCDD/F distributions at PSW recovery sites have been investigated in few previous studies. The results presented here indicate that appropriate measures should be taken to decrease the ecological risks posed by PSW recovery and to prevent, control, and remediate PCDD/F and other chemical contamination caused by PSW recovery.


Subject(s)
Dibenzofurans, Polychlorinated/analysis , Plastics/chemistry , Polychlorinated Dibenzodioxins/analysis , Soil/chemistry , Solid Waste/adverse effects , Benzofurans/analysis , China , Environmental Monitoring , Soil Pollutants/analysis
8.
Chemosphere ; 205: 244-252, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29705633

ABSTRACT

Because of measures taken by local and national government agencies to control releases of metals, former industrial sites in China that are contaminated with lead (Pb) in soils have been abandoned. Compared with historic sites themselves, little attention has been paid to contamination with Pb in areas surrounding these sites. In this study, a method by integrating sequential extraction and isotopic fingerprinting was proposed to reveal the key fractions of Pb contaminants in soils, trace their sources and determine the subject of liability for remediation. Topsoils from near a historic site, where lead oxide was produced, were found to be contaminated. Concentrations of Pb in soils were inversely proportional to distances from the industrial site and depth in soils. The predominant form of Pb was the Fe/Mn-oxide-bound fraction (FM3), which accounted for from 53.39% to 82.07% of total concentrations of Pb. Concentrations of Pb in vegetables produced on contaminated soils exceeded those allowed in food for consumption by humans. An assessment of hazards and risks posed by consumption of vegetables grown on these soils indicated relatively high potential for adverse effects on local residents around the closed plant. By use of isotopic finger printing for Pb, the abandoned factory was determined to be the most likely source of Pb in topsoils, especially fraction FM3. To mitigate exposures of people to Pb via consumption of locally produced food, recommended strategies should target legacy sources of Pb to soils in the vicinity of this historic industrial site.


Subject(s)
Heavy Metal Poisoning/etiology , Lead/analysis , Oxides/analysis , Soil Pollutants/analysis , Soil/chemistry , Vegetables/drug effects , China , Consumer Product Safety , Environmental Monitoring , Food Analysis , Food Contamination , Humans , Oxides/poisoning , Risk Assessment , Soil Pollutants/poisoning
9.
J Neurotrauma ; 34(1): 182-191, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26993214

ABSTRACT

Using magnetic resonance imaging (MRI) and an animal model of traumatic brain injury (TBI), we investigated the capacity and sensitivity of diffusion-derived measures, fractional anisotropy (FA), and diffusion entropy, to longitudinally identify structural plasticity in the injured brain in response to the transplantation of human bone marrow stromal cells (hMSCs). Male Wistar rats (300-350g, n = 30) were subjected to controlled cortical impact TBI. At 6 h or 1 week post-injury, these rats were intravenously injected with 1 mL of saline (at 6 h or 1 week, n = 5/group) or with hMSCs in suspension (∼3 × 106 hMSCs, at 6 h or 1 week, n = 10/group). In vivo MRI measurements and sensorimotor function estimates were performed on all animals pre-injury, 1 day post-injury, and weekly for 3 weeks post-injury. Bielschowsky's silver and Luxol fast blue staining were used to reveal the axon and myelin status, respectively, with and without cell treatment after TBI. Based on image data and histological observation, regions of interest encompassing the structural alterations were made and the values of FA and entropy were monitored in these specific brain regions. Our data demonstrate that administration of hMSCs after TBI leads to enhanced white matter reorganization particularly along the boundary of contusional lesion, which can be identified by both FA and entropy. Compared with the therapy performed at 1 week post-TBI, cell intervention executed at 6 h expedites the brain remodeling process and results in an earlier functional recovery. Although FA and entropy present a similar capacity to dynamically detect the microstructural changes in the tissue regions with predominant orientation of fiber tracts, entropy exhibits a sensitivity superior to that of FA, in probing the structural alterations in the tissue areas with complex fiber patterns.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Diffusion Magnetic Resonance Imaging/trends , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Animals , Male , Mesenchymal Stem Cells , Rats , Rats, Wistar
10.
Neurochem Int ; 111: 69-81, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27539657

ABSTRACT

Multipotent human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after experimental traumatic brain injury (TBI). The present study was designed to investigate whether systemic administration of cell-free exosomes generated from hMSCs cultured in 2-dimensional (2D) conventional conditions or in 3-dimensional (3D) collagen scaffolds promote functional recovery and neurovascular remodeling in rats after TBI. Wistar rats were subjected to TBI induced by controlled cortical impact; 24 h later tail vein injection of exosomes derived from hMSCs cultured under 2D or 3D conditions or an equal number of liposomes as a treatment control were performed. The modified Morris water maze, neurological severity score and footfault tests were employed to evaluate cognitive and sensorimotor functional recovery. Animals were sacrificed at 35 days after TBI. Histological and immunohistochemical analyses were performed for measurements of lesion volume, neurovascular remodeling (angiogenesis and neurogenesis), and neuroinflammation. Compared with liposome-treated control, exosome-treatments did not reduce lesion size but significantly improved spatial learning at 33-35 days measured by the Morris water maze test, and sensorimotor functional recovery, i.e., reduced neurological deficits and footfault frequency, observed at 14-35 days post injury (p < 0.05). Exosome treatments significantly increased the number of newborn endothelial cells in the lesion boundary zone and dentate gyrus, and significantly increased the number of newborn mature neurons in the dentate gyrus as well as reduced neuroinflammation. Exosomes derived from hMSCs cultured in 3D scaffolds provided better outcome in spatial learning than exosomes from hMSCs cultured in the 2D condition. In conclusion, hMSC-generated exosomes significantly improve functional recovery in rats after TBI, at least in part, by promoting endogenous angiogenesis and neurogenesis and reducing neuroinflammation. Thus, exosomes derived from hMSCs may be a novel cell-free therapy for TBI, and hMSC-scaffold generated exosomes may selectively enhance spatial learning.


Subject(s)
Brain Injuries, Traumatic/therapy , Exosomes/metabolism , Mesenchymal Stem Cells , Recovery of Function/physiology , Animals , Cell Culture Techniques/methods , Disease Models, Animal , Humans , Male , Neurogenesis/physiology , Rats, Wistar
13.
Environ Geochem Health ; 37(3): 587-601, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25571860

ABSTRACT

To assess aggregate exposure to polycyclic aromatic hydrocarbons (PAHs) via several environmental media and pathways, a probabilistic framework for multi-pathway health risk assessment that integrates PAHs potency equivalence factors, risk estimation modeling, and Monte Carlo simulation was applied to a case study in Nanjing, which is an important industrial city in China. Incremental lifetime risk of additional cancers posed by exposure to 16 USEPA priority PAHs in air, water, soil, and fish was assessed. Risks to three age groups, infants, children, and adults, through various exposure pathways, including oral ingestion, dermal absorption, and inhalation, were estimated. Results of the analysis of risk indicated that B[a]P, B[b]F, and BA were the predominant PAHs pollutants in Nanjing. Risk of additional cancer for local adults was on average 2.62 × 10(-5). The risks were primarily due to ingestion of fish and inhalation, which contributed 99 % of the total risks. By contrast, risk to infants was essentially negligible. Results of a sensitivity analysis indicated that the input variables of concentration of PAHs in fish (C f), the body weight (BW), and the ingestion rate of fish (IRf) were the major influences on estimates of risks.


Subject(s)
Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Neoplasms/chemically induced , Polycyclic Aromatic Hydrocarbons/analysis , Adult , Air Pollution/analysis , Animals , Child , China/epidemiology , Cities , Environmental Exposure/adverse effects , Female , Fishes , Food Contamination/analysis , Foodborne Diseases/epidemiology , Humans , Infant , Male , Monte Carlo Method , Neoplasms/epidemiology , Risk Assessment , Soil Pollutants/analysis , Water Pollution, Chemical/analysis
14.
J Neurosurg ; 120(5): 1147-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24460490

ABSTRACT

OBJECT: Neurocan is a major form of growth-inhibitory molecule (growth-IM) that suppresses axonal regeneration after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit neurocan expression in vitro and in animal models of cerebral ischemia. Therefore, the present study was designed to investigate the effects of treatment of MSCs impregnated with collagen scaffolds on neurocan expression after traumatic brain injury (TBI). METHODS: Adult male Wistar rats were injured with controlled cortical impact and treated with saline, human MSCs (hMSCs) (3 × 10(6)) alone, or hMSCs (3 × 10(6)) impregnated into collagen scaffolds (scaffold + hMSCs) transplanted into the lesion cavity 7 days after TBI (20 rats per group). Rats were sacrificed 14 days after TBI, and brain tissues were harvested for immunohistochemical studies, Western blot analyses, laser capture microdissections, and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to evaluate neurocan protein and gene expressions after various treatments. RESULTS: Animals treated with scaffold + hMSCs after TBI showed increased axonal and synaptic densities compared with the other groups. Scaffold + hMSC treatment was associated with reduced TBI-induced neurocan protein expression and upregulated growth-associated protein 43 (GAP-43) and synaptophysin expression in the lesion boundary zone. In addition, animals in the scaffold + hMSC group had decreased neurocan transcription in reactive astrocytes after TBI. Reduction of neurocan expression was significantly greater in the scaffold + hMSC group than in the group treated with hMSCs alone. CONCLUSIONS: The results of this study show that transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal plasticity in TBI rats. This enhanced axonal plasticity may partially be attributed to the downregulation of neurocan expression by hMSC treatment after injury.


Subject(s)
Axons/metabolism , Brain Injuries/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Neurocan/metabolism , Tissue Scaffolds , Animals , Axons/pathology , Brain Injuries/metabolism , Brain Injuries/pathology , Collagen/metabolism , Disease Models, Animal , Male , Rats , Rats, Wistar , Recovery of Function/physiology
15.
Brain Res ; 1542: 41-8, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24177046

ABSTRACT

Nogo-A is a major form of growth inhibitory molecule (growth-IM) which inhibits axonal regeneration and neurite regrowth after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit Nogo-A expression in vitro and in cerebral ischemic animal models. The present study was designed to investigate the effects of treatment with human MSCs (hMSCs) impregnated into collagen scaffolds on the expression of Nogo-A and axonal plasticity after traumatic brain injury (TBI). Adult male Wistar rats were injured with controlled cortical impact and treated either with saline, hMSCs-alone or hMSCs impregnated into collagen scaffolds (scaffold+hMSC) transplanted into the lesion cavity 7 days after TBI. Rats were sacrificed 14 days after TBI and brain tissues were harvested for immunohistochemical studies, Western blot analysis, laser capture microdissections and qRT-PCR to evaluate axonal density and Nogo-A protein and gene expressions. Our data showed that treatment of TBI with scaffold+hMSC significantly decreased TBI-induced Nogo-A protein expression and increased axonal density compared to saline and hMSC-alone treatments. In addition, scaffold+hMSC transplantation decreased Nogo-A transcription in oligodendrocytes after TBI. Scaffold+hMSC treatment was superior to hMSC-alone treatment in suppressing Nogo-A expression and enhancing axonal regeneration after TBI. Our data suggest that transplanting hMSCs with scaffolds down-regulates Nogo-A transcription and protein expression which may partially contribute to the enhanced axonal regeneration after TBI.


Subject(s)
Bone Marrow Transplantation/methods , Brain Injuries , Collagen/metabolism , Down-Regulation/physiology , Myelin Proteins/metabolism , Nerve Regeneration/physiology , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Axons/metabolism , Axons/pathology , Brain Injuries/pathology , Brain Injuries/physiopathology , Brain Injuries/surgery , Collagen/genetics , Disease Models, Animal , Humans , Laser Capture Microdissection , Male , Nogo Proteins , Oligodendroglia/physiology , Rats , Rats, Wistar , Tissue Scaffolds
16.
PLoS One ; 8(4): e61241, 2013.
Article in English | MEDLINE | ID: mdl-23637800

ABSTRACT

We assessed the effects of low dose methamphetamine treatment of traumatic brain injury (TBI) in rats by employing MRI, immunohistology, and neurological functional tests. Young male Wistar rats were subjected to TBI using the controlled cortical impact model. The treated rats (n = 10) received an intravenous (iv) bolus dose of 0.42 mg/kg of methamphetamine at eight hours after the TBI followed by continuous iv infusion for 24 hrs. The control rats (n = 10) received the same volume of saline using the same protocol. MRI scans, including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), were performed one day prior to TBI, and at 1 and 3 days post TBI, and then weekly for 6 weeks. The lesion volumes of TBI damaged cerebral tissue were demarcated by elevated values in T2 maps and were histologically identified by hematoxylin and eosin (H&E) staining. The fractional anisotropy (FA) values within regions-of-interest (ROI) were measured in FA maps deduced from DTI, and were directly compared with Bielschowsky's silver and Luxol fast blue (BLFB) immunohistological staining. No therapeutic effect on lesion volumes was detected during 6 weeks after TBI. However, treatment significantly increased FA values in the recovery ROI compared with the control group at 5 and 6 weeks after TBI. Myelinated axons histologically measured using BLFB were significantly increased (p<0.001) in the treated group (25.84±1.41%) compared with the control group (17.05±2.95%). Significant correlations were detected between FA and BLFB measures in the recovery ROI (R = 0.54, p<0.02). Methamphetamine treatment significantly reduced modified neurological severity scores from 2 to 6 weeks (p<0.05) and foot-fault errors from 3 days to 6 weeks (p<0.05) after TBI. Thus, the FA data suggest that methamphetamine treatment improves white matter reorganization from 5 to 6 weeks after TBI in rats compared with saline treatment, which may contribute to the observed functional recovery.


Subject(s)
Brain Injuries/drug therapy , Brain Injuries/pathology , Brain/pathology , Methamphetamine/administration & dosage , Neurons/drug effects , Animals , Axons/pathology , Diffusion Magnetic Resonance Imaging , Immunohistochemistry , Male , Neurons/pathology , Rats , Rats, Wistar
17.
PLoS One ; 8(5): e63511, 2013.
Article in English | MEDLINE | ID: mdl-23717439

ABSTRACT

BACKGROUND: Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC) which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI) with and without MSC treatment. METHODS: Fifteen male Wistar rats, were treated with saline (n = 6) or MSCs (n = 9) and were sacrificed at 6 weeks after controlled cortical impact (CCI). Healthy non-CCI rats (n = 5), were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS) test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients. RESULTS: Neurite densities exhibited a significant correlation (R(2)>0.80, p<1E-20) between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC) as 0.86. The conventional fractional anisotropy (FA) correlated moderately with histological neurite density (R(2) = 0.59, P<1E-5) with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region. CONCLUSIONS: The present studies demonstrated that neurite density can be estimated by MRI after TBI and MRI measurement of neurite density is a sensitive marker to MSC treatment response.


Subject(s)
Brain Injuries/pathology , Brain Injuries/physiopathology , Brain/physiopathology , Magnetic Resonance Imaging/methods , Neurites/pathology , Recovery of Function/physiology , Animals , Axons/pathology , Bone Marrow Cells/pathology , Bone Marrow Transplantation/methods , Brain/pathology , Brain Injuries/therapy , Disease Models, Animal , Male , Myelin Sheath/pathology , Rats , Rats, Wistar
18.
J Neurosurg ; 118(2): 381-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23198801

ABSTRACT

OBJECT: This study was designed to investigate how transplantation into injured brain of human bone marrow stromal cells (hMSCs) impregnated in collagen scaffolds affects axonal sprouting in the spinal cord after traumatic brain injury (TBI) in rats. Also investigated was the relationship of axonal sprouting to sensorimotor functional recovery after treatment. METHODS: Adult male Wistar rats (n = 24) underwent a controlled cortical impact injury and were divided into three equal groups (8 rats/group). The two treatment groups received either hMSCs (3 × 10(6)) alone or hMSC (3 × 10(6))-impregnated collagen scaffolds transplanted into the lesion cavity. In the control group, saline was injected into the lesion cavity. All treatments were performed 7 days after TBI. On Day 21 after TBI, a 10% solution of biotinylated dextran amine (10,000 MW) was stereotactically injected into the contralateral motor cortex to label the corticospinal tract (CST) originating from this area. Sensorimotor function was tested using the modified neurological severity score (mNSS) and foot-fault tests performed on Days 1, 7, 14, 21, 28, and 35 after TBI. Spatial learning was tested with Morris water maze test on Days 31-35 after TBI. All rats were sacrificed on Day 35 after TBI, and brain and spinal cord (cervical and lumbar) sections were stained immunohistochemically for histological analysis. RESULTS: Few biotinylated dextran amine-labeled CST fibers crossing over the midline were found in the contralateral spinal cord transverse sections at both cervical and lumbar levels in saline-treated (control) rats. However, hMSC-alone treatment significantly increased axonal sprouting from the intact CST into the denervated side of the gray matter of both cervical and lumbar levels of the spinal cord (p < 0.05). Also, this axonal sprouting was significantly more in the scaffold+hMSC group compared with the hMSC-alone group (p < 0.05). Sensorimotor functional analysis showed significant improvement of mNSS (p < 0.05) and foot-fault tests (p < 0.05) in hMSC-alone and scaffold+hMSC-treated rats compared with controls (p < 0.05). Functional improvement, however, was significantly greater in the scaffold+hMSC group compared with the hMSC-alone group (p < 0.05). Morris water maze testing also showed significant improvement in spatial learning in scaffold+hMSC and hMSC-alone groups compared with the control group (p < 0.05), with rats in the scaffold+hMSC group performing significantly better than those in the hMSC-alone group (p < 0.05). Pearson correlation data showed significant correlation between the number of crossing CST fibers detected and sensorimotor recovery (p < 0.05). CONCLUSIONS: Axonal plasticity plays an important role in neurorestoration after TBI. Transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal sprouting of CST fibers from the contralateral intact cortex into the denervated side of spinal cord after TBI. This enhanced axonal regeneration may at least partially contribute to the therapeutic benefits of treating TBI with hMSCs.


Subject(s)
Brain Injuries/therapy , Growth Cones/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Pyramidal Tracts , Tissue Scaffolds , Animals , Axons/physiology , Biotin/analogs & derivatives , Biotin/metabolism , Collagen/pharmacology , Dextrans/metabolism , Disease Models, Animal , Gait/physiology , Graft Survival/physiology , Male , Maze Learning/physiology , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Pyramidal Tracts/cytology , Pyramidal Tracts/physiology , Pyramidal Tracts/surgery , Random Allocation , Rats , Rats, Wistar , Recovery of Function/physiology
19.
PLoS One ; 7(11): e46793, 2012.
Article in English | MEDLINE | ID: mdl-23152752

ABSTRACT

Heavy metal pollution is becoming a serious issue in developing countries such as China, and the public is increasingly aware of its adverse health impacts in recent years. We assessed the potential health risks in a lead-zinc mining area and attempted to identify the key exposure pathways. We evaluated the spatial distributions of personal exposure using indigenous exposure factors and field monitoring results of water, soil, food, and indoor and outdoor air samples. The risks posed by 10 metals and the contribution of inhalation, ingestion and dermal contact pathways to these risks were estimated. Human hair samples were also analyzed to indicate the exposure level in the human body. Our results show that heavy metal pollution may pose high potential health risks to local residents, especially in the village closest to the mine (V1), mainly due to Pb, Cd and Hg. Correspondingly, the residents in V1 had higher Pb (8.14 mg/kg) levels in hair than those in the other two villages. Most of the estimated risks came from soil, the intake of self-produced vegetables and indoor air inhalation. This study highlights the importance of site-specific multipathway health risk assessments in studying heavy-metal exposures in China.


Subject(s)
Lead/analysis , Mining , Occupational Exposure , Zinc/analysis , China , Environmental Monitoring , Environmental Pollution , Hair/chemistry , Humans , Metals, Heavy , Risk Assessment
20.
Brain Res ; 1486: 121-30, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23026078

ABSTRACT

The beneficial effects of simvastatin on experimental traumatic brain injury (TBI) have been demonstrated in previous studies. In this study, we investigated the effects of simvastatin on axonal injury and neurite outgrowth after experimental TBI and explored the underlying mechanisms. Wistar rats were subjected to controlled cortical impact or sham surgery. Saline or simvastatin was administered for 14 days. A modified neurological severity score (mNSS) test was performed to evaluate functional recovery. Immunohistochemistry studies using synaptophysin, neurofilament H (NF-H) and amyloid-ß precursor protein (APP) were performed to examine synaptogenesis and axonal injury. Primary cortical neurons (PCNs) were subjected to oxygen glucose deprivation (OGD) followed by various treatments. Western blot analysis was utilized to assess the activation of phosphatidylinositol-3 kinase (PI-3K)/Akt/mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3ß (GSK-3ß)/adenomatous polyposis coli (APC) pathways. Simvastatin decreased the density of APP-positive profiles and increased the density of NF-H -positive profiles. Simvastatin reduced mNSS, which was correlated with the increase of axonal density. Simvastatin treatment stimulated the neurite outgrowth of PCNs after OGD, which was attenuated by LY294002 and enhanced by lithium chloride (LiCl). Simvastatin activated Akt and mTOR, inactivated GSK-3ß and dephosphorylated APC in the injured PCNs. Our data suggest that simvastatin reduces axonal injury, enhances neurite outgrowth and promotes neurological functional recovery after experimental TBI. The beneficial effects of simvastatin on neurite outgrowth may be mediated through manipulation of the PI-3K/Akt/mTOR and PI-3K/GSK-3ß/APC pathways.


Subject(s)
Axons/drug effects , Brain Injuries/drug therapy , Cerebral Cortex/drug effects , Neurites/drug effects , Simvastatin/therapeutic use , Animals , Axons/pathology , Brain Injuries/pathology , Cells, Cultured , Cerebral Cortex/pathology , Male , Neurites/pathology , Neurons/drug effects , Neurons/pathology , Rats , Rats, Wistar , Simvastatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...