Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(37)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35671676

ABSTRACT

A carbon nanosphere nanofluid (CNS-nanofluid) was successfully prepared through the non-covalent modification of carbon nanosphere (CNS) with the specific ionic liquid (i.e. [M2070][VBS]) at first. The resulting CNS-nanofluid is a homogeneous and stable fluid with liquid-like behaviour at room temperature, and which shows better dispersion stability in its good solvents and improved processability than the pristine CNS. Subsequently, this CNS-nanofluid was used as a kind of novel functional filler and incorporated into epoxy matrix to prepare the CNS-nanofluid filled epoxy composites (CNS-nanofluid/EP composites). The toughness and thermal properties of those CNS-nanofluid/EP composites were carefully characterized and analysed. And it was found that this CNS-nanofluid could respectively improve the impact toughness and glass transition temperature of the CNS-nanofluid/EP composites to 19.8 kJ m-2and 122.5 °C at the optimum amount, demonstrating that this CNS-nanofluid is a kind of promising functional filler to achieve robust epoxy composites, and thus opening up new possibilities with great significance for epoxy composites in high-performance applications.

2.
ACS Sens ; 7(6): 1720-1731, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35613367

ABSTRACT

Globally, bladder cancer (BLC) is one of the most common cancers and has a high recurrence and mortality rate. Current clinical diagnostic approaches are either invasive or inaccurate. Here, we report on a cost-efficient, artificially intelligent chemiresistive sensor array made of polyaniline (PANI) derivatives that can noninvasively diagnose BLC at an early stage and maintain postoperative surveillance through ″smelling″ clinical urine samples at room temperature. In clinical trials, 18 healthy controls and 76 BLC patients (60 and 16 at early and advanced stages, respectively) are assessed by the artificial olfactory system. With the assistance of a support vector machine (SVM), very high sensitivity and accuracy from healthy controls are achieved, exceeding those obtained by the current techniques in practice. In addition, the recurrences of both early and advanced stages are diagnosed well, with the effect of confounding factors on the performance of the artificial olfactory system found to have a negligible influence on the diagnostic performance. Overall, this study contributes a novel, noninvasive, easy-to-use, inexpensive, real-time, accurate method for urine disease diagnosis, which can be useful for personalized care/diagnosis and postoperative surveillance, resulting in saving more lives.


Subject(s)
Urinary Bladder Neoplasms , Humans , Smell , Urinary Bladder Neoplasms/diagnosis
3.
Nanomicro Lett ; 13(1): 188, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34482476

ABSTRACT

A good method of synthesizing Ti3C2Tx (MXene) is critical for ensuring its success in practical applications, e.g., electromagnetic interference shielding, electrochemical energy storage, catalysis, sensors, and biomedicine. The main concerns focus on the moderation of the approach, yield, and product quality. Herein, a modified approach, organic solvent-assisted intercalation and collection, was developed to prepare Ti3C2Tx flakes. The new approach simultaneously solves all the concerns, featuring a low requirement for facility (centrifugation speed < 4000 rpm in whole process), gram-level preparation with remarkable yield (46.3%), a good electrical conductivity (8672 S cm-1), an outstanding capacitive performance (352 F g-1), and easy control over the dimension of Ti3C2Tx flakes (0.47-4.60 µm2). This approach not only gives a superb example for the synthesis of other MXene materials in laboratory, but sheds new light for the future mass production of Ti3C2Tx MXene.

4.
Langmuir ; 36(43): 13060-13069, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33095589

ABSTRACT

In this research, upconversion nanoparticles (UCNPs) are used as a light conversion carrier, and their deep light source penetrability is closely combined with ultrathin two-dimensional (2D) Ti3C2Tx to explore the application efficiency of the complex in phototherapy. Due to the advantages of 2D Ti3C2Tx with its high absorbance to ultraviolet/visible light, rich atomic defects to load the drugs, and adjustable thinner structure, this 2D material is beneficially applied as the energy donor. UCNPs@Ti3C2Tx with a photothermal conversion efficiency of 20.7% is proven with the ability to generate reactive oxygen species under a 980 nm laser at the cellular level. Importantly, the main photothermal therapy method can be changed to a photodynamic therapy method due to the degradation of Ti3C2Tx to TiO2 under the oxygen-bearing environment. The in vivo experiment was continued to verify that UCNPs@Ti3C2Tx can kill tumor cells and inhibit tumor growth within a certain period. In addition, in vivo treatment with a combination of immunotherapy and phototherapy of UCNPs@ Ti3C2Tx is carried out to achieve stronger tumor inhibition over the prolonged time points.


Subject(s)
Nanoparticles , Photochemotherapy , Phototherapy , Titanium
5.
Small ; 16(24): e2001363, 2020 06.
Article in English | MEDLINE | ID: mdl-32390318

ABSTRACT

Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface-to-volume ratio as well as the mechanical robustness of nanostructures for obtaining highly-sensitive detection of motion. To do so, highly-aligned nanowires covering a large area were prepared by capillarity-based mechanism. The nanowires exhibit a strain sensor with excellent gauge factor (≈35.8), capable of high responses to various subtle external stimuli (≤200 µm deformation). The wearable strain sensor exhibits also a rapid response rate (≈230 ms), mechanical stability (1000 cycles) and reproducibility, low hysteresis (<8.1%), and low power consumption (<35 µW). Moreover, it achieves a gauge factor almost five times that of microwire-based sensors. The nanowire-based strain sensor can be used to monitor and discriminate subtle movements of fingers, wrist, and throat swallowing accurately, enabling such movements to be integrated further into a miniaturized analyzer to create a wearable motion monitoring system for mobile healthcare.


Subject(s)
Nanowires , Wearable Electronic Devices , Humans , Monitoring, Physiologic , Motion , Reproducibility of Results
6.
Chem Rev ; 119(22): 11761-11817, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31729868

ABSTRACT

This article aims to review nature-inspired chemical sensors for enabling fast, relatively inexpensive, and minimally (or non-) invasive diagnostics and follow-up of the health conditions. It can be achieved via monitoring of biomarkers and volatile biomarkers, that are excreted from one or combination of body fluids (breath, sweat, saliva, urine, seminal fluid, nipple aspirate fluid, tears, stool, blood, interstitial fluid, and cerebrospinal fluid). The first part of the review gives an updated compilation of the biomarkers linked with specific sickness and/or sampling origin. The other part of the review provides a didactic examination of the concepts and approaches related to the emerging chemistries, sensing materials, and transduction techniques used for biomarker-based medical evaluations. The strengths and pitfalls of each approach are discussed and criticized. Future perspective with relation to the information and communication era is presented and discussed.


Subject(s)
Biomarkers/analysis , Biosensing Techniques/methods , Body Fluids/chemistry , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Diagnostic Techniques and Procedures , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...